Causal Network Inference by Optimal Causation Entropy

The broad abundance of time series data, which is in sharp contrast to limited knowledge of the underlying network dynamic processes that produce such observations, calls for a rigorous and efficient method of causal network inference. Here we develop mathematical theory of causation entropy, an information-theoretic statistic designed for model-free causality inference. For stationary Markov processes, we prove that for a given node in the network, its causal parents form the minimal set of nodes that maximizes causation entropy, a result we refer to as the optimal causation entropy principle. Furthermore, this principle guides us in developing computational and data efficient algorithms for causal network inference based on a two-step discovery and removal algorithm for time series data for a network-coupled dynamical system. Validation in terms of analytical and numerical results for Gaussian processes on large random networks highlights that inference by our algorithm outperforms previous leading meth...

[1]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[2]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[3]  Jürgen Kurths,et al.  Escaping the curse of dimensionality in estimating multivariate transfer entropy. , 2012, Physical review letters.

[4]  Jie Sun,et al.  Controllability transition and nonlocality in network control. , 2013, Physical review letters.

[5]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Semiopen Mass Action Systems * , 2022 .

[6]  K. Kendrick,et al.  Partial Granger causality—Eliminating exogenous inputs and latent variables , 2008, Journal of Neuroscience Methods.

[7]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  William J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.

[10]  Adilson E. Motter,et al.  Detecting structural breaks in seasonal time series by regularized optimization , 2013, 1505.04305.

[11]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[12]  Dane Taylor,et al.  Network connectivity during mergers and growth: optimizing the addition of a module. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[14]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[15]  Kojima Structure and function , 2005 .

[16]  S. D. Pethel,et al.  Exact significance test for Markov order , 2014 .

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[19]  J. Rogers Chaos , 1876 .

[20]  T. Schreiber,et al.  Information transfer in continuous processes , 2002 .

[21]  S. Greenland,et al.  Causation and causal inference in epidemiology. , 2005, American journal of public health.

[22]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[23]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Ian Stewart,et al.  Patterns of Synchrony in Coupled Cell Networks with Multiple Arrows , 2005, SIAM J. Appl. Dyn. Syst..

[26]  Fritz Heider,et al.  Social perception and phenomenal causality. , 1944 .

[27]  M. Studený,et al.  The Multiinformation Function as a Tool for Measuring Stochastic Dependence , 1998, Learning in Graphical Models.

[28]  S. Pethel,et al.  Distinguishing anticipation from causality: anticipatory bias in the estimation of information flow. , 2011, Physical review letters.

[29]  E. S. Gopi,et al.  Probability And Random Process , 2007 .

[30]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[31]  E. Ott,et al.  The effect of network topology on the stability of discrete state models of genetic control , 2009, Proceedings of the National Academy of Sciences.

[32]  S. Frenzel,et al.  Partial mutual information for coupling analysis of multivariate time series. , 2007, Physical review letters.

[33]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[34]  A. J. Bell THE CO-INFORMATION LATTICE , 2003 .

[35]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[36]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[37]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[38]  Martin Guha,et al.  Encyclopedia of Statistics in Behavioral Science , 2006 .

[39]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[40]  Clive W. J. Granger,et al.  Some recent developments in a concept of causality , 2001 .

[41]  Jürgen Kurths,et al.  Quantifying Causal Coupling Strength: A Lag-specific Measure For Multivariate Time Series Related To Transfer Entropy , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Adilson E Motter,et al.  Robustness of optimal synchronization in real networks. , 2011, Physical review letters.

[43]  A. Barraud A numerical algorithm to solve AT X A - X = Q , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[44]  M. Bartlett The frequency goodness of fit test for probability chains , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[46]  J. Heckman,et al.  Econometric Causality , 2008 .

[47]  Kellen Petersen August Real Analysis , 2009 .

[48]  Daniele Marinazzo,et al.  Radial basis function approach to nonlinear Granger causality of time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  M Palus,et al.  Synchronization as adjustment of information rates: detection from bivariate time series. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Franz von Kutschera,et al.  Causation , 1993, J. Philos. Log..

[51]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[52]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[53]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[54]  Desmond J. Higham,et al.  Geometric De-noising of Protein-Protein Interaction Networks , 2009, PLoS Comput. Biol..

[55]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[56]  M. Paluš,et al.  Inferring the directionality of coupling with conditional mutual information. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Adilson E Motter,et al.  Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions , 2009, Proceedings of the National Academy of Sciences.

[58]  Erik M. Bollt,et al.  Synchronization as a Process of Sharing and Transferring Information , 2012, Int. J. Bifurc. Chaos.

[59]  Gordon Pipa,et al.  Transfer entropy—a model-free measure of effective connectivity for the neurosciences , 2010, Journal of Computational Neuroscience.

[60]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[61]  W. R. Garner Uncertainty and structure as psychological concepts , 1975 .

[62]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[63]  Erik M. Bollt,et al.  Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings , 2014, 1504.03769.

[64]  Anne S. Kiremidjian,et al.  Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures , 2014 .

[65]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[66]  M. L. Eaton Multivariate statistics : a vector space approach , 1985 .

[67]  Qing Gao,et al.  Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality , 2011, NeuroImage.

[68]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[69]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[70]  A. Seth,et al.  Granger causality and transfer entropy are equivalent for Gaussian variables. , 2009, Physical review letters.

[71]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[72]  K. Hlavácková-Schindler,et al.  Causality detection based on information-theoretic approaches in time series analysis , 2007 .

[73]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[74]  Michael I. Jordan Graphical Models , 2003 .

[75]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[76]  Ning Chen,et al.  On the approximability of influence in social networks , 2008, SODA '08.

[77]  Dmitry A Smirnov,et al.  Spurious causalities with transfer entropy. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  C. Granger Some recent development in a concept of causality , 1988 .

[79]  D. V. Gokhale,et al.  Entropy expressions and their estimators for multivariate distributions , 1989, IEEE Trans. Inf. Theory.

[80]  Woodrow L. Shew,et al.  Predicting criticality and dynamic range in complex networks: effects of topology. , 2010, Physical review letters.

[81]  A. Kraskov,et al.  Erratum: Estimating mutual information [Phys. Rev. E 69, 066138 (2004)] , 2011 .

[82]  Mason A. Porter,et al.  Dynamic network centrality summarizes learning in the human brain , 2012, J. Complex Networks.

[83]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  G. Rangarajan,et al.  Multiple Nonlinear Time Series with Extended Granger Causality , 2004 .