Ant colony optimization algorithm for stochastic project crashing problem in PERT networks using MC simulation

This paper describes a new approach based on ant colony optimization (ACO) metaheuristic and Monte Carlo (MC) simulation technique, for project crashing problem (PCP) under uncertainties. To our knowledge, this is the first application of ACO technique for the stochastic project crashing problem (SPCP), in the published literature. A confidence-level-based approach has been proposed for SPCP in program evaluation and review technique (PERT) type networks, where activities are subjected to discrete cost functions and assumed to be exponentially distributed. The objective of the proposed model is to optimally improve the project completion probability in a prespecified due date based on a predefined probability. In order to solve the constructed model, we apply the ACO algorithm and path criticality index, together. The proposed approach applies the path criticality concept in order to select the most critical path by using MC simulation technique. Then, the developed ACO is used to solve a nonlinear integer mathematical programming for selected path. In order to demonstrate the model effectiveness, a large scale illustrative example has been presented and several computational experiments are conducted to determine the appropriate levels of ACO parameters, which lead to the accurate results with reasonable computational time. Finally, a comparative study has been conducted to validate the ACO approach, using several randomly generated problems.

[1]  L Sunde,et al.  Net-present-value cost/time tradeoff , 1995 .

[2]  Ghaleb Y. Abbasi,et al.  Crashing PERT networks using mathematical programming , 2001 .

[3]  F. Pettersson,et al.  Hybrid ant colony optimization and visibility studies applied to a job-shop scheduling problem , 2007, Appl. Math. Comput..

[4]  S. Elmaghraby,et al.  Optimal Time-Cost Trade-Offs in GERT Networks , 1972 .

[5]  James J. Solberg,et al.  The use of cutsets in Monte Carlo analysis of stochastic networks , 1979 .

[6]  Jingyu Wang,et al.  Ant colony optimization for the nonlinear resource allocation problem , 2006, Appl. Math. Comput..

[7]  P. Simin Pulat,et al.  Time-Resource Tradeoff Problem , 1996 .

[8]  Wallace B. S. Crowston,et al.  Decision CPM: A Method for Simultaneous Planning, Scheduling, and Control of Projects , 1967, Oper. Res..

[9]  J. J. Martin Distribution of the Time Through a Directed, Acyclic Network , 1965 .

[10]  Serap Ulusam Seçkiner,et al.  Ant colony optimization for the job rotation scheduling problem , 2008, Appl. Math. Comput..

[11]  J. Horowitz,et al.  Critical Path Problems with Concave Cost-Time Curves , 1972 .

[12]  D. R. Fulkerson A Network Flow Computation for Project Cost Curves , 1961 .

[13]  Mario Vanhoucke,et al.  The discrete time/cost trade-off problem: extensions and heuristic procedures , 2007, J. Sched..

[14]  Robert L. Bregman,et al.  A heuristic procedure for solving the dynamic probabilistic project expediting problem , 2009, Eur. J. Oper. Res..

[15]  T. D. Klastorin,et al.  An effective methodology for the stochastic project compression problem , 2007 .

[16]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[17]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[18]  R. A. Bowman Stochastic gradient-based time-cost tradeoffs in PERT networks using simulation , 1994, Ann. Oper. Res..

[19]  Nicolai Siemens A Simple CPM Time-Cost Tradeoff Algorithm , 1971 .

[20]  Prem Vrat,et al.  A goal programming model for project crashing with piecewise linear time-cost trade-off , 1986 .

[21]  W. Verdini,et al.  Nonlinear time/cost tradeoff models in project management , 1995 .

[22]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[23]  Amir Azaron,et al.  A genetic algorithm approach for the time-cost trade-off in PERT networks , 2005, Appl. Math. Comput..

[24]  R. R. Hocking,et al.  Optimum Time Compression in Project Scheduling , 1970 .

[25]  Avraham Shtub,et al.  The stochastic time–cost tradeoff problem: A robust optimization approach , 2007 .

[26]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Seyyed M. T. Fatemi Ghomi,et al.  Path critical index and activity critical index in PERT networks , 2002, Eur. J. Oper. Res..

[28]  Stephan Foldes,et al.  PERT and crashing revisited: Mathematical generalizations , 1990 .

[29]  Dimitri Golenko-Ginzburg,et al.  A heuristic for network project scheduling with random activity durations depending on the resource allocation , 1998 .

[30]  James E. Kelley,et al.  Critical-Path Planning and Scheduling: Mathematical Basis , 1961 .

[31]  Jirachai Buddhakulsomsiri,et al.  Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting , 2006, Eur. J. Oper. Res..

[32]  Christine Strauss,et al.  A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management , 2000, INFORMS J. Comput..

[33]  Erik Demeulemeester,et al.  New computational results on the discrete time/cost trade-off problem in project networks , 1998, J. Oper. Res. Soc..

[34]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[35]  S. Kamal Chaharsooghi,et al.  An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP) , 2008, Appl. Math. Comput..

[36]  L. Valadares Tavares A multi-stage non-deterministic model for project scheduling under resources constraints , 1990 .

[37]  Reza Abbasnia,et al.  Time–cost optimization: using GA and fuzzy sets theory for uncertainties in cost , 2008 .

[38]  Haoxun Chen,et al.  Ant colony optimization for solving an industrial layout problem , 2007, Eur. J. Oper. Res..

[39]  Erik Demeulemeester,et al.  Optimal procedures for the discrete time/cost trade-off problem in project networks , 1996 .

[40]  P. S. Pulat,et al.  Time-resource tradeoff problem [project scheduling] , 1996 .

[41]  Sou-Sen Leu,et al.  A GA-based fuzzy optimal model for construction time-cost trade-off , 2001 .

[42]  Chung-Wei Feng,et al.  Stochastic construction time-cost trade-off analysis , 2000 .

[43]  João Paulo Costa,et al.  A stochastic multimode model for time–cost tradeoffs under management flexibility , 2007, OR Spectr..

[44]  R. A. Bowman Efficient estimation of arc criticalities in stochastic activity networks , 1995 .

[45]  D. R. Robinson A Dynamic Programming Solution to Cost-Time Tradeoff for CPM , 1975 .

[46]  E. Ritchie,et al.  Project compression: A method for speeding up resource constrained projects which preserve the activity schedule , 1990 .

[47]  H. M. Soroush The Most Critical Path in a PERT Network , 1994 .

[48]  Chung-Wei Feng,et al.  The LP/IP hybrid method for construction time-cost trade-off analysis , 1996 .

[49]  Amir Azaron,et al.  Time-cost trade-off via optimal control theory in Markov PERT networks , 2007, Ann. Oper. Res..

[50]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[51]  S. K. Goyal Note---A Note on “A Simple CPM Time-Cost Tradeoff Algorithm” , 1975 .

[52]  Cyril Fonlupt,et al.  Parallel Ant Colonies for the quadratic assignment problem , 2001, Future Gener. Comput. Syst..

[53]  G. H. Bradley Equivalent Integer Programs and Canonical Problems , 1971 .

[54]  E. B. Berman,et al.  Resource Allocation in a PERT Network Under Continuous Activity Time-Cost Functions , 1964 .

[55]  Amir Azaron,et al.  A multi-objective resource allocation problem in dynamic PERT networks , 2006, Appl. Math. Comput..