Multimode VCSEL Enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF Data Link

By enhancing the differential gain and reducing the capacitance of the 850-nm multi-mode vertical cavity surface emitting laser (VCSEL) with an analog bandwidth beyond 25 GHz via the use of InGaAs/AlGaAs quantum wells and multiple oxide confinement layers, the transmission of directly encoded 4-level pulse amplitude modulation (PAM-4) data at 42 GBaud and 16-quadrature amplitude modulation orthogonal frequency division multiplexing (16-QAM OFDM) data at 35 GBaud are demonstrated. After passing through 100-m OM5 multimode fiber (MMF), the detailed comparison between the VCSELs designed with different aperture sizes of 5.5/<inline-formula> <tex-math notation="LaTeX">$7.5~\mu \text{m}$ </tex-math></inline-formula> is performed. The 7.5-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-aperture VCSEL provides the higher power with larger quantum efficiency but exhibits the narrower 3-dB bandwidth and higher noise level than those of the 5.5-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-aperture VCSEL. Shrinking the oxide-confined aperture to <inline-formula> <tex-math notation="LaTeX">$5.5~\mu \text{m}$ </tex-math></inline-formula> assists the VCSEL to expand its 3-dB bandwidth to 25.2 GHz and suppresses its relative intensity noise to −135 dBc/Hz, which contributes to support the highest data rate up to 84 and 140 Gbit/s, respectively, for PAM-4 and 16-QAM OFDM data under forward error correction criterion at optical back-to-back condition. Even after transmitting through 100-m-long OM5-MMF, the allowable data transmission rate still remains at 80 Gbit/s for PAM-4 and 120 Gbit/s for 16-QAM OFDM with their receiving power penalty of 3.24 and 3.1 dB, respectively, when the data is carried by the 5.5-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-aperture VCSEL. Such a newly designed VCSEL structure promotes its allowable bandwidth to manifest the feasibility toward 50-GBaud per channel capacity for future data center applications.

[1]  Stephen E. Ralph,et al.  High Capacity VCSEL Links , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[2]  107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[3]  Earl Parsons,et al.  The Impact of Effective Modal Bandwidth on 100G SWDM Transmission Over 250 m OM5 and Left-Tilt OM4 Multimode Fibers , 2018, Journal of Lightwave Technology.

[4]  I. Lyubomirsky,et al.  VCSEL-Based Interconnects for Current and Future Data Centers , 2015, Journal of Lightwave Technology.

[5]  Klaus Petermann,et al.  Noise performance of multimode VCSELs , 2001 .

[6]  C. Schow,et al.  A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link , 2015, IEEE Photonics Technology Letters.

[7]  Richard Schatz,et al.  Analog modulation properties of oxide confined VCSELs at microwave frequencies , 2002 .

[8]  James A. Lott,et al.  Energy Efficiency of Directly Modulated Oxide-Confined High Bit Rate 850-nm VCSELs for Optical Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs with 28 GHz modulation bandwidth , 2012, CLEO 2015.

[10]  Alex Mutig,et al.  40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL , 2010 .

[11]  Hao-Chung Kuo,et al.  Very High Bit-Rate Distance Product Using High-Power Single-Mode 850-nm VCSEL With Discrete Multitone Modulation Formats Through OM4 Multimode Fiber , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Hao-Chung Kuo,et al.  Modal Linewidth Dependent Transmission Performance of 850-nm VCSELs With Encoding PAM-4 Over 100-m MMF , 2017, IEEE Journal of Quantum Electronics.

[13]  D. Deppe,et al.  Comparison of vertical-cavity surface-emitting lasers with half-wave cavity spacers confined by single- or double-oxide apertures , 1997, IEEE Photonics Technology Letters.

[14]  Peter J. Winzer,et al.  Beyond 100G Ethernet , 2010, IEEE Communications Magazine.

[15]  Hsuan-Yun Kao,et al.  Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64  Gbit/s over 100–300  m in OM4 MMF , 2018, Photonics Research.

[16]  A. Gholami,et al.  Compensation of Chromatic Dispersion by Modal Dispersion in MMF- and VCSEL-Based Gigabit Ethernet Transmissions , 2009, IEEE Photonics Technology Letters.

[17]  Hsuan-Yun Kao,et al.  Long-Term Thermal Stability of Single-Mode VCSEL Under 96-Gbit/s OFDM Transmission , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Hao-Chung Kuo,et al.  850/940-nm VCSEL for optical communication and 3D sensing , 2018 .

[19]  Rainer Michalzik,et al.  High-performance oxide-confined GaAs VCSELs , 1997 .

[20]  Tao Gui,et al.  Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. , 2015, Optics express.

[21]  Tai-Cheng Lee,et al.  Multi-Mode VCSEL Chip with High-Indium-Density InGaAs/AlGaAs Quantum-Well Pairs for QAM-OFDM in Multi-Mode Fiber , 2017, IEEE Journal of Quantum Electronics.

[22]  Hao-Chung Kuo,et al.  Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. , 2017, Optics express.

[23]  Peter A. Andrekson,et al.  70 Gbps 4-PAM and 56 Gbps 8-PAM Using an 850 nm VCSEL , 2014, Journal of Lightwave Technology.

[24]  Fumio Koyama,et al.  Recent advances in VCSEL photonics , 2006, 16th Opto-Electronics and Communications Conference.

[25]  R. Pimpinella,et al.  Investigation of the Interaction of Modal and Chromatic Dispersion in VCSEL–MMF Channels , 2012, Journal of Lightwave Technology.

[26]  P. Westbergh,et al.  High-Speed, Low-Current-Density 850 nm VCSELs , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Tien-Tsorng Shih,et al.  Efficient Heat Dissipation of Uncooled 400-Gbps (16×25-Gbps) Optical Transceiver Employing Multimode VCSEL and PD Arrays , 2017, Scientific Reports.

[28]  Johan S. Gustavsson,et al.  30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s , 2015 .

[29]  Tien-Tsorng Shih,et al.  Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber , 2017 .