Learning adiabatic quantum algorithms over optimization problems
暂无分享,去创建一个
[1] Ioannis G. Kevrekidis,et al. On learning Hamiltonian systems from data. , 2019, Chaos.
[2] O. Lychkovskiy. Non-diagonal problem Hamiltonian for adiabatic quantum computation , 2018 .
[3] Enrico Blanzieri,et al. Quantum annealing learning search for solving QUBO problems , 2018, Quantum Information Processing.
[4] Kazutaka Takahashi. Hamiltonian Engineering for Adiabatic Quantum Computation: Lessons from Shortcuts to Adiabaticity , 2018, Journal of the Physical Society of Japan.
[5] Hilbert J Kappen,et al. Learning quantum models from quantum or classical data , 2018, Journal of Physics A: Mathematical and Theoretical.
[6] Hans-J. Briegel,et al. Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.
[7] Clément Bouttier,et al. Convergence Rate of a Simulated Annealing Algorithm with Noisy Observations , 2017, J. Mach. Learn. Res..
[8] Catherine C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.
[9] Sergio Boixo,et al. Spectral Gap Amplification , 2011, SIAM J. Comput..
[10] Jérémie Roland,et al. Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.
[11] M. Ruskai,et al. Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.
[12] R. Cleve,et al. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.
[13] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[14] Fred W. Glover,et al. Tabu search and finite convergence , 2002, Discret. Appl. Math..
[15] N. Cerf,et al. Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.
[16] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[17] Alexander Elgart,et al. The Adiabatic Theorem of Quantum Mechanics , 1998 .
[18] Ulrich Faigle,et al. Some Convergence Results for Probabilistic Tabu Search , 1992, INFORMS J. Comput..
[19] Awi Federgruen,et al. Ergodicity in Parametric Nonstationary Markov Chains: An Application to Simulated Annealing Methods , 1987, Oper. Res..
[20] A. Federgruen,et al. Simulated annealing methods with general acceptance probabilities , 1987, Journal of Applied Probability.
[21] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[22] Peter J. Love,et al. A variational eigenvalue solver on a quantum processor , 2018 .
[23] Alán Aspuru-Guzik,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[24] D. McMahon. Adiabatic Quantum Computation , 2008 .
[25] D. Kibler,et al. Instance-based learning algorithms , 2004, Machine Learning.
[26] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .