Feature selection based on binary particle swarm optimization and neural networks for pathological voice detection

Laryngeal pathologies directly affect the quality of the voice. In the last years, digital signal processing techniques have been applied for detection of vocal fold pathologies through speech signal analysis. In this work, a binary Particle Swarm Optimization (PSO) algorithm using Multilayer Perceptron (MLP) neural network is employed for the selection of the most significative features in a pathological voice detection system. The discrimination between healthy and pathological speech signals are obtained by 52 Haralick texture features, extracted from two-dimensional wavelet coefficients of the speech signals recurrence plots. The fitness function adopted is based in the maxima accuracy rate. Experimental results show that the use of PSO increased the accuracy rates with a minimum number of features.

[1]  N. Marwan Encounters with neighbours : current developments of concepts based on recurrence plots and their applications , 2003 .

[2]  Andrade Sobrinho,et al.  Medida da dispersão da periodicidade de um sinal de voz normal e voz patológica através da seção de Poincaré , 2011 .

[3]  H Nezamabadi Pour,et al.  BINARY PARTICLE SWARM OPTIMIZATION: CHALLENGES AND NEW SOLUTIONS , 2008 .

[4]  Juan Ignacio Godino-Llorente,et al.  Complexity analysis of pathological voices by means of hidden markov entropy measurements , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[5]  Vinícius Jefferson Dias Vieira Avaliação de Distúrbios da Voz por meio de Análise de Quantificação de Recorrência , 2014 .

[6]  S. Mallat A wavelet tour of signal processing , 1998 .

[7]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[8]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  Joao Paulo Ribeiro do Nascimento,et al.  Análise e classificaçao de imagens baseadas em características de textura utilizando matrizes de co-ocorrencia , 2011 .

[11]  Miguel Angel Ferrer-Ballester,et al.  Characterization of Healthy and Pathological Voice Through Measures Based on Nonlinear Dynamics , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[12]  Ricardo Dutra da Silva Segmentaçăo de imagens baseada em descritores de textura extraídos por transformadas wavelets , 2008 .

[13]  Washington C. de A. Costa Análise dinâmica não linear de sinais de voz para detecção de patologias laríngeas , 2012 .