Polarization conversion when focusing cylindrically polarized vortex beams

Currently, cylindrical beams with radial or azimuthal polarization are being used successfully for the optical manipulation of micro- and nano-particles as well as in microscopy, lithography, nonlinear optics, materials processing, and telecommunication applications. The creation of these laser beams is carried out using segmented polarizing plates, subwavelength gratings, interference, or light modulators. Here, we demonstrate the conversion of cylindrically polarized laser beams from a radial to an azimuthal polarization, or vice versa, by introducing a higher-order vortex phase singularity. To simultaneously generate several vortex phase singularities of different orders, we utilized a multi-order diffractive optical element. Both the theoretical and the experimental results regarding the radiation transmitted through the diffractive optical element show that increasing the order of the phase singularity leads to more efficient conversation of the polarization from radial to azimuthal. This demonstrates a close connection between the polarization and phase states of electromagnetic beams, which has important implications in many optical experiments.

[1]  David McGloin,et al.  Spin-to-orbital angular momentum conversion in a strongly focused optical beam. , 2007, Physical review letters.

[2]  G. Cincotti,et al.  Circularly polarized beams and vortex generation in uniaxial media. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[4]  A. Holbourn Angular Momentum of Circularly Polarised Light , 1936, Nature.

[5]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  G. Biener,et al.  Space-variant polarization manipulation , 2005 .

[7]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[8]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[9]  G. Biener,et al.  Chapter 4 – Space-variant polarization manipulation , 2005 .

[10]  Peter G. Kazansky,et al.  Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass , 2011 .

[11]  S. Wen,et al.  Generation of cylindrical vector vortex beams by two cascaded metasurfaces. , 2014, Optics express.

[12]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[13]  S. Khonina,et al.  Vortex phase elements as detectors of polarization state. , 2015, Optics express.

[14]  C. Raman The Angular Momentum of Light. , 1931, Nature.

[15]  Svetlana N. Khonina,et al.  Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations , 2014 .

[16]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[17]  Victor A. Soifer,et al.  Methods for Computer Design of Diffractive Optical Elements , 2001 .

[18]  Nikolay L. Kazanskiy,et al.  Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system , 2011 .

[19]  Victor A. Soifer,et al.  Generation of cylindrical vector beams of high orders using uniaxial crystals , 2015 .

[20]  Stuart Edwardson,et al.  Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses , 2012 .

[21]  Wieslaw Krolikowski,et al.  Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. , 2012, Optics letters.

[22]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[23]  Y. Kivshar,et al.  Spatially engineered polarization states and optical vortices in uniaxial crystals. , 2010, Optics express.

[24]  Andrew Forbes,et al.  Optical Angular Momentum , 2015 .

[25]  L. Marrucci,et al.  Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.

[26]  Rudolf Weber,et al.  Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. , 2010, Optics express.

[27]  Yoshio Hayasaki,et al.  Polarization distribution control of parallel femtosecond pulses with spatial light modulators. , 2013, Optics express.

[28]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[29]  Junichi Hamazaki,et al.  Optical-vortex laser ablation. , 2010, Optics express.

[30]  V. Niziev,et al.  Propagation features of beams with axially symmetric polarization , 2001 .

[31]  John Henry Poynting,et al.  The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light , 1909 .

[32]  Mark R. Dennis,et al.  Polarization singularities in isotropic random vector waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[34]  Jeffrey A. Davis,et al.  Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. , 2010, Optics express.

[35]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[36]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[37]  D. Grier A revolution in optical manipulation , 2003, Nature.

[38]  C. Sheppard,et al.  Polarization effects in 4Pi microscopy. , 2011, Micron.

[39]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[40]  Kathleen S. Youngworth,et al.  Dark-field imaging with cylindrical-vector beams. , 2006, Applied optics.

[41]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .

[43]  Ilya Golub,et al.  How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.