Adaptive methods for multi‐material ALE hydrodynamics
暂无分享,去创建一个
William J. Rider | Edward Love | Michael K. W. Wong | Sharon Joy Victor Petney | D. A. Labreche | S. Petney | E. Love | W. Rider | O. E. Strack | M. Wong | Otto Eric Strack | O. Strack | D. Labreche
[1] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[2] J. S. Peery,et al. RHALE: A MMALE shock physics code written in C++ , 1993 .
[3] Mikhail Shashkov,et al. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .
[4] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[5] Kent G. Budge,et al. Rhale: A 3-D Mmale Code For Unstructured Grids , 1993 .
[6] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[7] William J. Rider,et al. Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizations , 2007, J. Comput. Phys..
[8] D. Flanagan,et al. PRONTO 3D: A three-dimensional transient solid dynamics program , 1989 .
[9] B. Vanleer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[10] Mark L. Wilkins,et al. Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .
[11] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .
[12] E. Puckett,et al. A High-Order Godunov Method for Multiple Condensed Phases , 1996 .
[13] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[14] S. Zalesak. Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .
[15] H. Huynh,et al. Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .
[16] Mikhail Shashkov,et al. The repair paradigm and application to conservation laws , 2004 .
[17] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[18] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .