Soft X-ray Absorption and Emission Spectroscopic Investigation of Carbon and Carbon:Transition Metal Composite Films

Carbon and C:V, C:Co, C:Cu nanocomposite films grown by ion beam cosputtering in the temperature range from room temperature (RT) to 500 °C are investigated. Soft X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) have been used to determine electronic structure of the occupied and unoccupied electronic states of the coexisting carbon and transition metal (TM) constituents. The results from the spectroscopy are supplemented by the film composition data and TM inclusion phase structural information obtained by elastic recoil detection analysis and X-ray diffraction, respectively. The TM(2p) XAS shows that V (Cu) is in carbidic (metallic) state over the whole temperature range, while Co shows a transition from a carbidic toward a metallic state when the growth temperature increases from RT to 500 °C. The C(1s) XAS demonstrates that the increase in the growth temperature favors the formation of graphite-like structures in carbon films. On the other hand, the TM metal incorporation stro...

[1]  J. Stöhr,et al.  Local probing of the surface chemical bond using X-ray emission spectroscopy , 1997 .

[2]  F. D. Groot,et al.  High-Resolution X-ray Emission and X-ray Absorption Spectroscopy , 2001 .

[3]  K. H. Chen,et al.  Electronic structure of the Fe-layer-catalyzed carbon nanotubes studied by x-ray-absorption spectroscopy , 2001 .

[4]  M. Fujii,et al.  Thin Films of Carbon Nanocapsules and Onion-Like Graphitic Particles Prepared by the Cosputtering Method , 2000 .

[5]  Johansson,et al.  Theoretical and experimental study of the graphite 1s x-ray absorption edges. , 1996, Physical review. B, Condensed matter.

[6]  Fink,et al.  2p absorption spectra of the 3d elements. , 1985, Physical review. B, Condensed matter.

[7]  Guo,et al.  Angle-resolved soft-x-ray fluorescence and absorption study of graphite. , 1994, Physical review. B, Condensed matter.

[8]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[9]  David Babonneau,et al.  Spontaneous organization of columnar nanoparticles in Fe-BN nanocomposite films , 2005 .

[10]  A. Voevodin,et al.  Load-adaptive crystalline–amorphous nanocomposites , 1998 .

[11]  Jiechao Jiang,et al.  Multifunctional Co–C nanocomposite thin films , 2002 .

[12]  F. Jollet,et al.  Electronic Structure of α‐Quartz. A XANES Study of Empty States , 1993 .

[13]  T. Frauenheim,et al.  MOLECULAR-DYNAMICS STUDY OF THE FUNDAMENTAL PROCESSES INVOLVED IN SUBPLANTATION OF DIAMONDLIKE CARBON , 1998 .

[14]  Nagashima,et al.  Change in the electronic states of graphite overlayers depending on thickness. , 1994, Physical review. B, Condensed matter.

[15]  W. Y. Cheung,et al.  Structure, magnetic and electrical properties of soft magnetic Co–C amorphous thin films , 2003 .

[16]  H. Itoh,et al.  Electronic structure of monolayer graphite on some transition metal carbide surfaces , 1993 .

[17]  Louis J. Terminello,et al.  Stoichiometry reversal in the growth of thin oxynitride films on Si(100) surfaces , 1995 .

[18]  F. Petroff,et al.  Structural and magnetic properties of Fex–C1−x nanocomposite thin films , 2000 .

[19]  Carr,et al.  Graphitic interlayer states: A carbon K near-edge x-ray-absorption fine-structure study. , 1991, Physical review. B, Condensed matter.

[20]  Hudson,et al.  Probing the graphite band structure with resonant soft-x-ray fluorescence. , 1995, Physical review letters.

[21]  W. Meng,et al.  Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings , 2000 .

[22]  G. Bertoni,et al.  First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface , 2005 .

[23]  J. Stöhr,et al.  The bonding of simple carboxylic acids on Cu(110) , 2000 .

[24]  D. Kessler,et al.  Phase separation during film growth , 1992 .

[25]  D. Sellmyer,et al.  STRUCTURAL AND MAGNETIC PROPERTIES OF NANOCOMPOSITE CO:C FILMS , 1999 .

[26]  Yi Liu,et al.  Nanocomposite CoPt:C fi lms for extremely high- density recording , 1999 .

[27]  E. Moler,et al.  Analysis of the π* and Σ* bands of the x-ray absorption spectrum of amorphous carbon , 2001 .

[28]  E. Gullikson,et al.  Soft X-ray emission and absorption spectra in the C K region of sputtered amorphous carbon films , 2001 .

[29]  Takayoshi Hayashi,et al.  Formation and microstructural analysis of co-sputtered thin films consisting of cobalt nanograins embedded in carbon , 1997 .

[30]  C. D. Adams,et al.  Monte Carlo simulation of phase separation during thin‐film codeposition , 1993 .

[31]  R. Souda,et al.  Structure Analysis of Monolayer Graphite on Ni(111) Surface by Li+-Impact Collision Ion Scattering Spectroscopy , 2002 .

[32]  D. Babonneau,et al.  Co-sputtering C-Cu thin film synthesis : microstructural study of copper precipitates encapsulated into a carbon matrix , 1999 .

[33]  N. Jaeger,et al.  Electron microscopy study of the interaction of Ni, Pd and Pt with carbon: I. Nickel catalyzed graphitization of amorphous carbon☆ , 1993 .

[34]  L. Hultman,et al.  Fullerene-like Carbon Nitride: A Resilient Coating Material , 2003 .

[35]  T. Sham,et al.  Electronic structure of Cu-Au alloys from the Cu perspective: A Cu L 3,2 -edge study , 1997 .

[36]  Jinghua Guo Soft x-ray spectroscopy study of nanoscale materials , 2005, SPIE Optics + Photonics.

[37]  M. Katsnelson,et al.  Dynamical core-hole screening in the x-ray absorption spectra of graphite, C-60, and carbon nanotubes : a first-principles electronic structure study , 2006 .

[38]  W. Y. Cheung,et al.  Magnetic properties and structure evolution of amorphous Co–C nanocomposite films prepared by pulsed filtered vacuum arc deposition , 2000 .

[39]  C. Oshima,et al.  Atomic structure of monolayer graphite formed on Ni(111) , 1996 .

[40]  K. Müllen,et al.  Synthesis of polycyclic aromatic hydrocarbons and graphite islands via surface-induced reaction of small molecules. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  J. Stöhr,et al.  Enhanced secondary electron yield from oxidized regions on amorphous carbon films studied by x-ray spectromicroscopy , 1999 .

[42]  Nagashima,et al.  Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. , 1994, Physical review. B, Condensed matter.

[43]  P. Milani,et al.  Near-edge x-ray absorption fine structure and Raman characterization of amorphous and nanostructured carbon films , 1999 .

[44]  R. Sinclair,et al.  Crystallization of co-sputtered amorphous cobalt-carbon alloys , 1994 .

[45]  D. Babonneau,et al.  Microstructural study of a C–Fe alloy synthesized by ion-beam sputtering co-deposition , 1999 .

[46]  D. Klinke,et al.  A Theoretical Study of Carbon Chemisorption on Ni(111) and Co(0001) Surfaces , 1998 .

[47]  G. Radnóczi,et al.  Structural, electrical and magnetic properties of carbon–nickel composite thin films , 2005 .

[48]  J. Stöhr,et al.  The adsorption structure of glycine adsorbed on Cu(110); comparison with formate and acetate/Cu(110) , 1998 .

[49]  W. Y. Cheung,et al.  Microstructure evolution, magnetic domain structures, and magnetic properties of Co–C nanocomposite films prepared by pulsed-filtered vacuum arc deposition , 2000 .

[50]  J. G. Chen,et al.  Characterization of early transition metal carbides and nitrides by NEXAFS , 1995 .

[51]  W. Y. Cheung,et al.  Structure evolution, magnetic domain structures and magnetic properties of CoPt–C nanocomposite films , 2004 .

[52]  David R. McKenzie,et al.  A high-current pulsed cathodic vacuum arc plasma source , 2003 .

[53]  Jingguang G. Chen,et al.  A NEXAFS determination of the oxidation state of vanadium carbide on V(110): observation of charge transfer from vanadium to carbon , 1994 .

[54]  K. Fukutani,et al.  Phase-separated Al–Si thin films , 2005 .

[55]  F. D. Groot,et al.  X-ray absorption and dichroism of transition metals and their compounds , 1994 .

[56]  Masato Tomita,et al.  Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon , 1996, Nature.

[57]  J. Stöhr,et al.  First experimental results from IBM/TENN/TULANE/LLNL/LBL undulator beamline at the advanced light source , 1995 .

[58]  G. Radnóczi,et al.  Structure and spectroscopic properties of C–Ni and CNx–Ni nanocomposite films , 2005 .

[59]  G. Tourillon,et al.  A NEXAFS characterization of ion-beam-assisted carbon-sputtered thin films , 1995 .

[60]  I. Petrov,et al.  Interface structure in superhard TiN-SiN nanolaminates and nanocomposites : film growth experiments and ab initio calculations , 2007 .

[61]  Louis J. Terminello,et al.  Unfilled orbitals of C60 and C70 from carbon K-shell X-ray absorption fine structure , 1991 .

[62]  J. Robertson Diamond-like amorphous carbon , 2002 .

[63]  Rosenberg,et al.  Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite. , 1986, Physical review. B, Condensed matter.

[64]  G. Radnóczi,et al.  Growth regimes and metal enhanced 6-fold ring clustering of carbon in carbon-nickel composite thin films , 2007 .