The Alternating Sign Matrix Polytope

We define the alternating sign matrix polytope as the convex hull of $n\times n$ alternating sign matrices and prove its equivalent description in terms of inequalities. This is analogous to the well known result of Birkhoff and von Neumann that the convex hull of the permutation matrices equals the set of all nonnegative doubly stochastic matrices. We count the facets and vertices of the alternating sign matrix polytope and describe its projection to the permutohedron as well as give a complete characterization of its face lattice in terms of modified square ice configurations. Furthermore we prove that the dimension of any face can be easily determined from this characterization.

[1]  Greg Kuperberg,et al.  Another proof of the alternating sign matrix conjecture , 1996 .

[2]  J. Humphreys Polytopes, Graphs and Optimisation , 2022 .

[3]  M. Balinski,et al.  On the Assignment Polytope , 1974 .

[4]  David P. Robbins,et al.  Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.

[5]  Vincent A. Knight,et al.  Higher Spin Alternating Sign Matrices , 2007, Electron. J. Comb..

[6]  Michel Balinski,et al.  Some properties of the assignment polytope , 1972, Math. Program..

[7]  R. Brualdi Combinatorial Matrix Classes , 2006 .

[8]  R. Brualdi,et al.  Convex polyhedra of doubly stochastic matrices—IV , 1976 .

[9]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[10]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[11]  Richard A. Brualdi,et al.  The assignment polytope , 1976, Math. Program..

[12]  Richard A. Brualdi,et al.  Convex Polyhedra of Doubly Stochastic Matrices. I. Applications of the Permanent Function , 1977, J. Comb. Theory A.

[13]  D. Bressoud Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture , 1999 .

[14]  M. Schützenberger,et al.  Treillis et bases des groupes de Coxeter , 1996, Electron. J. Comb..

[15]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[16]  Wojciech Szatzschneider,et al.  An Inequality , 1991, SIAM Rev..

[17]  G. Ziegler Lectures on Polytopes , 1994 .

[18]  L. Mirsky,et al.  Results and problems in the theory of doubly-stochastic matrices , 1963 .

[19]  Louis J. Billera,et al.  The Combinatorics of Permutation Polytopes , 1994, Formal Power Series and Algebraic Combinatorics.

[20]  Louis J. Billera,et al.  All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..

[21]  Doron Zeilberger,et al.  Proof of the alternating sign matrix conjecture , 1994, Electron. J. Comb..

[22]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[23]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .