Atomistic Simulations of Aqueous Alteration Processes of Mafic Silicates in Carbonaceous Chondrites

[1]  M. Sodupe,et al.  Relevance of silicate surface morphology in interstellar H2 formation. Insights from quantum chemical calculations , 2015 .

[2]  A. Brearley,et al.  Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids , 2015 .

[3]  J. Trigo‐Rodríguez Aqueous alteration in chondritic asteroids and comets from the study of carbonaceous chondrites , 2015 .

[4]  Martin R. Lee,et al.  Ultra High Resolution Transmission Electron Microscopy of Matrix Mineral Grains in CM Chondrites: Preaccretionary or Parent Body Aqueous Processing? , 2015 .

[5]  C. I. Sainz-Díaz,et al.  Effect of Amorphous Ammonia–Water Ice onto Adsorption of Glycine on Cometary Dust Grain and IR Spectroscopy , 2014 .

[6]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[7]  M. Sodupe,et al.  Interstellar H adsorption and H₂ formation on the crystalline (010) forsterite surface: a B3LYP-D2* periodic study. , 2014, Physical chemistry chemical physics : PCCP.

[8]  M. Sodupe,et al.  B3LYP periodic study of the physicochemical properties of the nonpolar (010) Mg-pure and fe-containing olivine surfaces. , 2014, The journal of physical chemistry. A.

[9]  M. D. L. Pierre,et al.  Ab Initio Calculations of the Main Crystal Surfaces of Forsterite (Mg2SiO4): A Preliminary Study to Understand the Nature of Geochemical Processes at the Olivine Interface , 2014 .

[10]  A. Selloni,et al.  Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. , 2013, Journal of the American Chemical Society.

[11]  J. Wilcox,et al.  Interaction between Olivine and Water Based on Density Functional Theory Calculations , 2013 .

[12]  Harry Y. McSween,et al.  Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites , 2013 .

[13]  P. Deymier,et al.  A first-principles characterization of water adsorption on forsterite grains , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Y. Sano,et al.  Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite , 2013 .

[15]  F. Moreno,et al.  Adsorption of glycine on cometary dust grains: II—Effect of amorphous water ice , 2013 .

[16]  N. D. de Leeuw,et al.  Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface. , 2012, Physical chemistry chemical physics : PCCP.

[17]  M. Sodupe,et al.  Cooperative effects at water-crystalline silica interfaces strengthen surface silanol hydrogen bonding. An ab initio molecular dynamics study. , 2012, Physical chemistry chemical physics : PCCP.

[18]  C. Domain,et al.  Investigation of hydrogen bonds and temperature effects on the water monolayer adsorption on rutile TiO2 (110) by first-principles molecular dynamics simulations , 2011 .

[19]  N. English,et al.  Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface , 2011 .

[20]  S. Kerisit Water structure at hematite-water interfaces , 2011 .

[21]  A. Michaelides,et al.  Structure and dynamics of liquid water on rutile TiO2(110) , 2010 .

[22]  Y. Tateyama,et al.  Interface Water on TiO2 Anatase (101) and (001) Surfaces: First-Principles Study with TiO2 Slabs Dipped in Bulk Water , 2010 .

[23]  P. Beck,et al.  Hydrogen isotopic composition of the water in CR chondrites , 2010 .

[24]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[25]  Michiel Sprik,et al.  Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics. , 2010, Journal of chemical theory and computation.

[26]  M. Sodupe,et al.  Ab initio molecular dynamics study of the hydration of Li(+), Na(+) and K(+) in a montmorillonite model. Influence of isomorphic substitution. , 2010, Physical chemistry chemical physics : PCCP.

[27]  J. Blum,et al.  The Effect of Aqueous Alteration and Metamorphism in the Survival of Presolar Silicate Grains in Chondrites , 2009, Publications of the Astronomical Society of Australia.

[28]  A. Stack Molecular Dynamics Simulations of Solvation and Kink Site Formation at the {001} Barite-Water Interface. , 2009 .

[29]  O. Dulub,et al.  Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). , 2009, Nature materials.

[30]  A. Tilocca,et al.  Modeling the water-bioglass interface by ab initio molecular dynamics simulations. , 2009, ACS applied materials & interfaces.

[31]  J. Blum,et al.  Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies , 2009 .

[32]  R. Caminiti,et al.  Short Hydrogen Bonds at the Water/TiO2 (Anatase) Interface , 2008 .

[33]  Jinlong Yang,et al.  Quantum molecular dynamics study of water on TiO2(110) surface. , 2008, The Journal of chemical physics.

[34]  B. Rotenberg,et al.  Structure and dynamics of water at a clay surface from molecular dynamics simulation. , 2008, Physical chemistry chemical physics : PCCP.

[35]  P. Ugliengo,et al.  B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals , 2008 .

[36]  S. Kerisit,et al.  Molecular dynamics simulations of the orthoclase (001)-and (010)-water interfaces , 2008 .

[37]  G. Richmond,et al.  Interfacial Depth Profiling of the Orientation and Bonding of Water Molecules across Liquid−Liquid Interfaces , 2008 .

[38]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[39]  P. Cummings,et al.  Molecular Dynamics Study of Water Adsorption on TiO2 Nanoparticles , 2007 .

[40]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[41]  A. Tsuchiyama,et al.  Low-temperature single crystal reflection spectra of forsterite , 2006 .

[42]  J. Trigo‐Rodríguez,et al.  Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .

[43]  Jianwei Wang,et al.  Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study , 2006 .

[44]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[45]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[46]  U. Diebold,et al.  Mixed dissociated/molecular monolayer of water on the TiO2(0 1 1)-(2 × 1) surface , 2005 .

[47]  D. Lauretta,et al.  Radial migration and dehydration of phyllosilicates in the solar nebula , 2005 .

[48]  M. Ruckenbauer,et al.  Multilayer adsorption of water at a rutile TiO2)(110) surface: towards a realistic modeling by molecular dynamics. , 2004, The Journal of chemical physics.

[49]  S. C. Parker,et al.  Free energy of adsorption of water and metal ions on the [1014] calcite surface. , 2004, Journal of the American Chemical Society.

[50]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[51]  C. Geiger,et al.  A Raman spectroscopic study of Fe–Mg olivines , 2004 .

[52]  M. R. Philpott,et al.  Molecular dynamics simulation of water in a contact with an iron pyrite FeS2 surface. , 2004, The Journal of chemical physics.

[53]  A. Brearley,et al.  Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 , 2004 .

[54]  A. Selloni,et al.  Reaction pathway and free energy barrier for defect-induced water dissociation on the (101) surface of TiO2-anatase , 2003 .

[55]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[56]  M. Parrinello,et al.  Ab initio simulation of water interaction with the (100) surface of pyrite , 2003 .

[57]  F. Robert The D/H Ratio in Chondrites , 2003 .

[58]  Eric J. Bylaska,et al.  Molecular simulation of the magnetite-water interface , 2003 .

[59]  P. Lindan,et al.  Multilayer water adsorption on rutile TiO2(110): A first-principles study , 2003 .

[60]  D. Lauretta,et al.  A Nebular Origin for Chondritic Fine-Grained Phyllosilicates , 2003, Science.

[61]  P. Buseck,et al.  Fine‐grained rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 meteorites: Their origin and modification , 2002 .

[62]  W. Langel Car-Parrinello simulation of H2O dissociation on rutile , 2002 .

[63]  A. Brearley,et al.  Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: implications for parent body alteration , 2001 .

[64]  A. Brearley,et al.  Iron‐rich aureoles in the CM carbonaceous chondrites Murray, Murchison, and Allan Hills 81002: Evidence for in situ aqueous alteration , 2000 .

[65]  J. Hynes,et al.  A theoretical analysis of the sum frequency generation spectrum of the water surface , 2000 .

[66]  S. C. Parker,et al.  Modelling the effect of water on the surface structure and stability of forsterite , 2000 .

[67]  A. Brearley Origin of graphitic carbon and pentlandite in matrix olivines in the Allende meteorite. , 1999, Science.

[68]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[69]  M. J. Gillan,et al.  Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface , 1998 .

[70]  A. Rubin Mineralogy of meteorite groups , 1997 .

[71]  S. C. Parker,et al.  Computer simulation of the structure and stability of forsterite surfaces , 1997 .

[72]  M. J. Gillan,et al.  First-principles molecular dynamics simulation of water dissociation on TiO2 (110) , 1996 .

[73]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[74]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[75]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[76]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[77]  A. Chopelas,et al.  Single crystal Raman spectra of forsterite, fayalite, and monticellite , 1991 .

[78]  B. Reynard Single-crystal infrared reflectivity of pure Mg2SiO2 forsterite and (Mg0.86,Fe0.14)2SiO4 olivine , 1991 .

[79]  P. Buseck,et al.  Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .

[80]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[81]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[82]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[83]  A. Hofmeister Single-crystal absorption and reflection infrared spectroscopy of forsterite and fayalite , 1987 .

[84]  S. Rice,et al.  Structure of the liquid–vapor interface of water , 1985 .

[85]  K. Iishi Lattice dynamics of forsterite , 1978 .

[86]  Robert M. Hazen,et al.  Effects of temperature and pressure on the crystal structure of forsterite , 1976 .

[87]  B. Piriou,et al.  Infrared Reflectivity and Raman Scattering of Mg2SiO4 Single Crystal , 1973 .