Network Mediation Analysis Using Model-based Eigenvalue Decomposition.

This paper proposes a new two-stage network mediation method based on the use of a latent network approach -- model-based eigenvalue decomposition -- for analyzing social network data with nodal covariates. In the decomposition stage of the observed network, no assumption on the metric of the latent space structure is required. In the mediation stage, the most important eigenvectors of a network are used as mediators. This method further offers an innovative way for controlling for the conditional covariates and it only considers the information left in the network. We demonstrate this approach in a detailed tutorial R code provided for four separate cases -- unconditional and conditional model-based eigenvalue decompositions for either a continuous outcome or a binary outcome -- to show its applicability to empirical network data.

[1]  T. Sweet Modeling Social Networks as Mediators: A Mixed Membership Stochastic Blockmodel for Mediation , 2018, Journal of Educational and Behavioral Statistics.

[2]  D. A. Kenny,et al.  The social relations model: an integrative method for personality research , 1986 .

[3]  John G Bullock,et al.  Yes, But What's the Mechanism? (Don't Expect an Easy Answer) , 2010, Journal of personality and social psychology.

[4]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[5]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: III. Valued relations , 1999 .

[6]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  C. Judd,et al.  When moderation is mediated and mediation is moderated. , 2005, Journal of personality and social psychology.

[9]  L. Keele,et al.  A General Approach to Causal Mediation Analysis , 2010, Psychological methods.

[10]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[11]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[12]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[13]  T. Snijders,et al.  p2: a random effects model with covariates for directed graphs , 2004 .

[14]  Ying Yuan,et al.  Bayesian mediation analysis. , 2009, Psychological methods.

[15]  Yves Rosseel,et al.  lavaan: An R Package for Structural Equation Modeling , 2012 .

[16]  Peter D. Hoff,et al.  Multiplicative latent factor models for description and prediction of social networks , 2009, Comput. Math. Organ. Theory.

[17]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[18]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .

[19]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[20]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[21]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[22]  Peter D. Hoff,et al.  Bilinear Mixed-Effects Models for Dyadic Data , 2005 .

[23]  Peter D. Hoff,et al.  Dyadic data analysis with amen , 2015, 1506.08237.

[24]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data with R , 2020, Use R!.

[25]  D. A. Kenny,et al.  The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. , 1986, Journal of personality and social psychology.

[26]  Lawrence R. James,et al.  On the Path to Mediation , 2008 .

[27]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..

[28]  Yves Rosseel,et al.  blavaan: Bayesian structural equation models via parameter expansion , 2015, 1511.05604.

[29]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[30]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: II. Multivariate relations. , 1999, The British journal of mathematical and statistical psychology.

[31]  Mark Newman,et al.  Models of the Small World , 2000 .

[32]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[33]  Jenine K. Harris An Introduction to Exponential Random Graph Modeling , 2013 .

[34]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[35]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Kosuke Imai,et al.  Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies , 2011, American Political Science Review.

[37]  B. Bollobás The evolution of random graphs , 1984 .

[38]  Peter D. Hoff,et al.  Additive and Multiplicative Effects Network Models , 2018, Statistical Science.

[39]  Patrick J. Rosopa,et al.  The Relative Validity of Inferences About Mediation as a Function of Research Design Characteristics , 2008 .

[40]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .