A pedestrian's view on interacting particle systems, KPZ universality and random matrices

These notes are based on lectures delivered by the authors at a Langeoog seminar of SFB/TR12 "Symmetries and universality in mesoscopic systems" to a mixed audience of mathematicians and theoretical physicists. After a brief outline of the basic physical concepts of equilibrium and nonequilibrium states, the one-dimensional simple exclusion process is introduced as a paradigmatic nonequilibrium interacting particle system. The stationary measure on the ring is derived and the idea of the hydrodynamic limit is sketched. We then introduce the phenomenological Kardar-Parisi-Zhang (KPZ) equation and explain the associated universality conjecture for surface fluctuations in growth models. This is followed by a detailed exposition of a seminal paper of Johansson that relates the current fluctuations of the totally asymmetric simple exclusion process (TASEP) to the Tracy-Widom distribution of random matrix theory. The implications of this result are discussed within the framework of the KPZ conjecture.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[3]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[4]  E. Hopf,et al.  The Partial Differential Equation u_i + uu_x = μu_t , 1950 .

[5]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[6]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[7]  F. Spitzer Interaction of Markov processes , 1970 .

[8]  David R. Nelson,et al.  Large-distance and long-time properties of a randomly stirred fluid , 1977 .

[9]  P. Moran,et al.  Reversibility and Stochastic Networks , 1980 .

[10]  H. Rost,et al.  Non-equilibrium behaviour of a many particle process: Density profile and local equilibria , 1981 .

[11]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[12]  Herbert Spohn,et al.  Long range correlations for stochastic lattice gases in a non-equilibrium steady state , 1983 .

[13]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[14]  Stationary measures for an exclusion process on one-dimensional lattices with infinitely many hopping sites , 1985 .

[15]  D. Huse,et al.  Huse, Henley, and Fisher respond. , 1985, Physical review letters.

[16]  H. Spohn,et al.  Excess noise for driven diffusive systems. , 1985, Physical review letters.

[17]  Sander,et al.  Ballistic deposition on surfaces. , 1986, Physical review. A, General physics.

[18]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[19]  Zhang,et al.  Scaling of directed polymers in random media. , 1987, Physical review letters.

[20]  Liu,et al.  Time-reversal invariance and universality of two-dimensional growth models. , 1987, Physical review. B, Condensed matter.

[21]  Mehran Kardar,et al.  REPLICA BETHE ANSATZ STUDIES OF TWO-DIMENSIONAL INTERFACES WITH QUENCHED RANDOM IMPURITIES , 1987 .

[22]  Herbert Spohn,et al.  Microscopic models of hydrodynamic behavior , 1988 .

[23]  M. Plischke,et al.  Equilibrium statistical physics , 1988 .

[24]  Krug,et al.  Universality classes for deterministic surface growth. , 1988, Physical review. A, General physics.

[25]  Errico Presutti,et al.  The weakly asymmetric simple exclusion process , 1989 .

[26]  J. Krug,et al.  Anomalous Fluctuations in the Driven and Damped Sine-Gordon Chain , 1989 .

[27]  P. Ferrari,et al.  MICROSCOPIC STRUCTURE OF TRAVELLING WAVES IN THE ASYMMETRIC SIMPLE EXCLUSION PROCESS , 1991 .

[28]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[29]  Krug,et al.  Boundary-induced phase transitions in driven diffusive systems. , 1991, Physical review letters.

[30]  Pablo A. Ferrari,et al.  Shock fluctuations in asymmetric simple exclusion , 1992 .

[31]  H. Spohn,et al.  Universality class of interface growth with reflection symmetry , 1992 .

[32]  S. Resnick Adventures in stochastic processes , 1992 .

[33]  Krug,et al.  Amplitude universality for driven interfaces and directed polymers in random media. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  Universality in surface growth: Scaling functions and amplitude ratios. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[35]  A. Schadschneider,et al.  Cellular automation models and traffic flow , 1993, cond-mat/9306017.

[36]  B. Derrida,et al.  Exact solution of the totally asymmetric simple exclusion process: Shock profiles , 1993 .

[37]  Binder,et al.  Scaling of fluctuations in one-dimensional interface and hopping models. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[39]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[40]  Krug,et al.  Disorder-induced unbinding in confined geometries. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[42]  Johnson,et al.  Measurement of the longitudinal spin-dependent neutron-proton total cross-section difference Delta sigma L(np) between 500 and 800 MeV. , 1994, Physical review. D, Particles and fields.

[43]  Yicheng Zhang,et al.  Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics , 1995 .

[44]  Beate Schmittmann,et al.  Statistical mechanics of driven diffusive systems , 1995 .

[45]  Nagel,et al.  Discrete stochastic models for traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  J. Krim,et al.  Experimental Observations of Self-Affine Scaling and Kinetic Roughening at Sub-Micron Lengthscales , 1995 .

[47]  Ramakrishna Ramaswamy,et al.  PAIRWISE BALANCE AND INVARIANT MEASURES FOR GENERALIZED EXCLUSION PROCESSES , 1996 .

[48]  Mode-coupling and renormalization group results for the noisy Burgers equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  J. Krug Origins of scale invariance in growth processes , 1997 .

[50]  Gunter M. Schutz Exact Solution of the Master Equation for the Asymmetric Exclusion Process , 1997 .

[51]  G. Giacomin,et al.  Stochastic Burgers and KPZ Equations from Particle Systems , 1997 .

[52]  Short-time scaling behavior of growing interfaces , 1997, cond-mat/9703063.

[53]  J. Timonen,et al.  KINETIC ROUGHENING IN SLOW COMBUSTION OF PAPER , 1997 .

[54]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[55]  Geometric Evolution Under Isotropic Stochastic Flow , 1998 .

[56]  J. Krug,et al.  Ground-state energy anisotropy for directed polymers in random media , 1998 .

[57]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[58]  P. Ferrari,et al.  Fluctuations of a Surface Submitted to a Random Average Process , 1998 .

[59]  Claude Kipnis,et al.  Some Interacting Particle Systems , 1999 .

[60]  Timo Seppäläinen,et al.  Existence of Hydrodynamics for the Totally Asymmetric Simple K-Exclusion Process , 1999 .

[61]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[62]  Eric M. Rains,et al.  Symmetrized Random Permutations , 1999 .

[63]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[64]  Persistence of Kardar-Parisi-Zhang interfaces , 1998, cond-mat/9809241.

[65]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[66]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[67]  A. Schadschneider,et al.  Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.

[68]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[69]  Joachim Krug Phase separation in disordered exclusion models , 2000 .

[70]  H. Spohn,et al.  Statistical Self-Similarity of One-Dimensional Growth Processes , 1999, cond-mat/9910273.

[71]  J. Krug,et al.  Asymmetric Particle Systems on ℝ , 1999, cond-mat/9909034.

[72]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[73]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 2000, Physical review letters.

[74]  Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.

[75]  J. Krug,et al.  Minimal current phase and universal boundary layers in driven diffusive systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[77]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[78]  B. Sagan The Symmetric Group , 2001 .

[79]  C. Tracy,et al.  Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.

[80]  Current Fluctuations for the Totally Asymmetric Simple Exclusion Process , 2001, cond-mat/0101200.

[81]  J. Vollmer Chaos, spatial extension, transport, and non-equilibrium thermodynamics , 2002 .

[82]  A. Kuijlaars,et al.  Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.

[83]  $J/\psi$ production via initial state radiation in $e^+e^- \to \mu^+ \mu^- \gamma$ at an $e^+e^-$ center-of-mass energy near 10.6-GeV , 2003, hep-ex/0310027.

[84]  J. Krug,et al.  Islands, mounds, and atoms , 2003 .

[85]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[86]  Anisotropic ballistic deposition model with links to the Ulam problem and the Tracy-Widom distribution. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  J. Krug,et al.  Islands, mounds and atoms : patterns and processes in crystal growth far from equilibrium , 2004 .

[88]  Tomohiro Sasamoto,et al.  Asymmetric simple exclusion process and modified random matrix ensembles , 2004 .

[89]  Fluctuations of the one-dimensional polynuclear growth model with external sources , 2004, math-ph/0406001.

[90]  21pYO-3 Spatial correlations of the 1D KPZ surface on a flat substrate , 2005, cond-mat/0504417.

[91]  J. Timonen,et al.  Experimental determination of KPZ height-fluctuation distributions , 2005 .

[92]  W. Koenig Orthogonal polynomial ensembles in probability theory , 2004, math/0403090.

[93]  M. Evans,et al.  Nonequilibrium statistical mechanics of the zero-range process and related models , 2005, cond-mat/0501338.

[94]  Current Distribution and Random Matrix Ensembles for an Integrable Asymmetric Fragmentation Process , 2004, cond-mat/0405464.

[95]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[96]  S. Singha Persistence of surface fluctuations in radially growing surfaces , 2005 .

[97]  The Random Average Process and Random Walk in a Space-Time Random Environment in One Dimension , 2005, math/0507226.

[98]  Second class particles and cube root asymptotics for Hammersley's process , 2006, math/0603345.

[99]  Order of current variance and diffusivity in the asymmetric simple exclusion process , 2006, math/0608400.

[100]  t1/3 Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on $${\mathbb{Z}}$$ , 2006, math/0605266.

[101]  Herbert Spohn Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals , 2006 .

[102]  J. Quastel,et al.  A note on the diffusivity of finite-range asymmetric exclusion processes on Z , 2007 .

[103]  Scaling Limit for the Space-Time Covariance of the Stationary Totally Asymmetric Simple Exclusion Process , 2006 .

[104]  K. Mallick,et al.  The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics , 2006 .

[105]  P. Deift Universality for mathematical and physical systems , 2006, math-ph/0603038.

[106]  R. A. Blythe,et al.  Nonequilibrium steady states of matrix-product form: a solver's guide , 2007, 0706.1678.

[107]  Jinho Baik,et al.  Discrete Orthogonal Polynomials , 2007, Encyclopedia of Special Functions: The Askey-Bateman Project.

[108]  Fluctuation Properties of the TASEP with Periodic Initial Configuration , 2006, math-ph/0608056.

[109]  T. Sasamoto,et al.  Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques , 2007, 0705.2942.

[110]  B. Derrida,et al.  of Statistical Mechanics : Theory and Experiment Non-equilibrium steady states : fluctuations and large deviations of the density and of the current , 2007 .

[111]  Peter D. Miller,et al.  Discrete orthogonal polynomials: Asymptotics and applications , 2007 .

[112]  J. Quastel,et al.  t 1/3 Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on , 2007, 0705.2416.

[113]  Transition between Airy1 and Airy2 processes and TASEP fluctuations , 2007, math-ph/0703023.

[114]  Satya N. Majumdar,et al.  Course 4 Random matrices, the ulam problem, directed polymers & growth models, and sequence matching , 2007, cond-mat/0701193.

[115]  B. Schmittmann,et al.  Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states , 2007 .

[116]  Stochastic interacting particle systems out of equilibrium , 2007, 0705.1247.

[117]  P. Ferrari The universal Airy1 and Airy2 processes in the Totally Asymmetric Simple Exclusion Process , 2007 .

[118]  A. Borodin,et al.  Large time asymptotics of growth models on space-like paths I: PushASEP , 2007, 0707.2813.

[119]  Séminaire N. Bourbaki Random matrices and permutations, matrix integrals and integrable systems , 2007 .

[120]  Cedric Boeckx,et al.  Islands , 2008, Lang. Linguistics Compass.

[121]  P. Moerbeke Nonintersecting Brownian motions, integrable systems and orthogonal polynomials , 2008 .

[122]  C. Tracy,et al.  A Fredholm Determinant Representation in ASEP , 2008, 0804.1379.

[123]  The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion , 2008, 0806.3410.

[124]  T. Seppalainen,et al.  Fluctuation bounds for the asymmetric simple exclusion process , 2008, 0806.0829.

[125]  Craig A. Tracy,et al.  Asymptotics in ASEP with Step Initial Condition , 2008, 0807.1713.

[126]  D. Lubinsky Universality limits in the bulk for arbitrary measures on compact sets , 2008 .

[127]  P. Ferrari Slow decorrelations in Kardar–Parisi–Zhang growth , 2008 .

[128]  P. Miller,et al.  The Steepest Descent Method for Orthogonal Polynomials on the Real Line with Varying Weights , 2008, 0805.1980.

[129]  C. Tracy,et al.  Integral Formulas for the Asymmetric Simple Exclusion Process , 2007, 0704.2633.

[130]  D. Lubinsky,et al.  On the Airy Reproducing Kernel, Sampling Series, and Quadrature Formula , 2009 .

[131]  H. Spohn,et al.  Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation , 2009, 0908.2096.

[132]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[133]  Folkmar Bornemann,et al.  On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review , 2009, 0904.1581.

[134]  J. Quastel,et al.  SCALING EXPONENT FOR THE HOPF-COLE SOLUTION OF KPZ/STOCHASTIC BURGERS , 2009, 0909.4816.

[135]  C. Tracy,et al.  On ASEP with Step Bernoulli Initial Condition , 2009, 0907.5192.

[136]  D. Lubinsky Universality limits for random matrices and de Branges spaces of entire functions , 2009 .

[137]  On the distribution of a second-class particle in the asymmetric simple exclusion process , 2009, 0907.4395.

[138]  G. B. Arous,et al.  Current fluctuations for TASEP: A proof of the Pr\ , 2009, 0905.2993.

[139]  H. Spohn,et al.  One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. , 2010, Physical review letters.

[140]  J. Baik,et al.  Limit process of stationary TASEP near the characteristic line , 2009, 0907.0226.

[141]  H. Spohn,et al.  Exact height distributions for the KPZ equation with narrow wedge initial condition , 2010, 1002.1879.

[142]  H. Spohn,et al.  The Crossover Regime for the Weakly Asymmetric Simple Exclusion Process , 2010, 1002.1873.

[143]  S. Péché,et al.  Limit Processes for TASEP with Shocks and Rarefaction Fans , 2010, 1002.3476.

[144]  K. Takeuchi,et al.  Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. , 2010, Physical review letters.

[145]  Alberto Rosso,et al.  Free-energy distribution of the directed polymer at high temperature , 2010, 1002.4560.

[146]  C. Tracy,et al.  Formulas for ASEP with Two-Sided Bernoulli Initial Condition , 2010, 1001.4766.

[147]  V. Dotsenko Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers , 2010, 1003.4899.

[148]  E. Speert,et al.  Dynamics of an anchored Toom interface , 2022 .