Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured thermo-mechanical components. Spray drying of powder feedstock appears to have a significant effect on the improved mechanical properties of the bulk nanocomposite. The reported elastic modulus of the nanocomposite nearly doubles due to the presence of HfC nano particulates in the W matrix. High resolution transmission electron microscopy (HRTEM) revealed the retention of nanostructures at the select process conditions and is correlated with the enhanced mechanical properties of the nanocomposite.

[1]  F. Tietz,et al.  Spray-drying of ceramics for plasma-spray coating , 2000 .

[2]  Yu Zhou,et al.  Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications , 2003 .

[3]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[4]  Maher I. Boulos,et al.  Plasma power can make better powders , 2004 .

[5]  Y. Saito,et al.  Encapsulation of TiC AND HfC crystallites within graphite cages by arc discharge , 1997 .

[6]  Subra Suresh,et al.  Continuous measurements of load-penetration curves with spherical microindenters and the estimation of mechanical properties , 1998 .

[7]  S. Rajagopalan,et al.  Nano- and microscale mechanical characterization using instrumented indentation , 2002 .

[8]  S. Seal,et al.  Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique , 2005 .

[9]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[10]  C. Coddet,et al.  Influence of slurry characteristics on the morphology of spray-dried alumina powders , 2003 .

[11]  E. Lavernia,et al.  Spray Atomization and Deposition , 1996 .

[12]  S. Lukasiewicz Spray‐Drying Ceramic Powders , 1989 .

[13]  H. Liao,et al.  Plasma spraying of nanostructured partially yttria stabilized zirconia powders , 2004 .

[14]  P. Caceres Effect of microstructure on the abrasive wear properties of infiltrated tungsten alloys , 2002 .

[15]  S. Seal,et al.  Manufacturing Nanocomposite Parts: Present Status and Future Challenges , 2004 .

[16]  B. J. Mac Donald,et al.  Near-net-shape manufacture of engineering components using bulge-forming processes: a review , 2002 .

[17]  W. Johnson,et al.  Melt infiltration casting of bulk metallic-glass matrix composites , 1998 .

[18]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[19]  W. R. Witzke,et al.  Mechanical properties of a tungsten-23.4 percent rhenium-0.27 percent hafnium-carbon alloy , 1971 .

[20]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[21]  Stephen W. H. Yih,et al.  Tungsten: Sources, Metallurgy, Properties, and Applications , 1979 .

[22]  S. Seal,et al.  FIB cross‐sectioning of a single rapidly solidified hypereutectic Al‐Si powder particle for HRTEM , 2005, Microscopy research and technique.