Digital Convexity, Straightness, and Convex Polygons

New schemes for digitizing regions and arcs are introduced. It is then shown that under these schemes, Sklansky's definition of digital convexity is equivalent to other definitions. Digital convex polygons of n vertices are defined and characterized in terms of geometric properties of digital line segments. Also, a linear time algorithm is presented that, given a digital convex region, determines the smallest integer n such that the region is a digital convex n-gon.

[1]  Chul E. Kim,et al.  Digital and cellular convexity , 1982, Pattern Recognit..

[2]  Ugo Montanari On Limit Properties in Digitization Schemes , 1970, JACM.

[3]  Jack Sklansky,et al.  Recognition of convex blobs , 1970, Pattern Recognit..

[4]  Daniel S. Hirschberg,et al.  Parallel algorithms for the transitive closure and the connected component problems , 1976, STOC '76.

[5]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[6]  Azriel Rosenfeld,et al.  Digital Straight Lines and Convexity of Digital Regions , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Sartaj Sahni,et al.  Finding Connected Components and Connected Ones on a Mesh-Connected Parallel Computer , 1980, SIAM J. Comput..

[8]  AZRIEL ROSENFELD,et al.  Digital Straight Line Segments , 1974, IEEE Transactions on Computers.

[9]  Chul E. Kim On cellular straight line segments , 1982, Comput. Graph. Image Process..

[10]  Theodosios Pavlidis,et al.  Analysis of set patterns , 1968, Pattern Recognit..

[11]  Azriel Rosenfeld,et al.  Convex Digital Solids , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Theodosios Pavlidis,et al.  Structural pattern recognition , 1977 .

[13]  Chul E. Kim On the Cellular Convexity of Complexes , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  L. Hodes Discrete Approximation of Continuous Convex Blobs , 1970 .

[15]  Michael L. Baird Structural Pattern Recognition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Theodosios Pavlidis,et al.  Decomposition of Polygons into Simpler Components: Feature Generation for Syntactic Pattern Recognition , 1975, IEEE Transactions on Computers.

[17]  Azriel Rosenfeld,et al.  Digital Straightness and Convexity , 1980 .

[18]  Jack Sklansky,et al.  Minimum-Perimeter Polygons of Digitized Silhouettes , 1972, IEEE Transactions on Computers.