A generalized analytical energy balance model for evaluating agglomeration from a binary collision of wet particles

[1]  J. Chaouki,et al.  Kinetic study of multiphase reactions under microwave irradiation: A mini-review , 2022, Frontiers in Chemical Engineering.

[2]  S. Heinrich,et al.  Investigation of the influence of impact velocity and liquid bridge volume on the maximum liquid bridge length , 2022, Advanced Powder Technology.

[3]  R. Ocone,et al.  CFD‐DEM simulations of wet particles fluidization with a new evolution model for liquid bridge , 2022, AIChE Journal.

[4]  Hao Liu,et al.  Ilmenite as alternative bed material for the combustion of coal and biomass blends in a fluidised bed combustor to improve combustion performance and reduce agglomeration tendency , 2022, Energy.

[5]  L. L. Simon,et al.  Monte Carlo Analysis-Based CapEx Uncertainty Estimation of New Technologies: The Case of Photochemical Lamps , 2021, Organic Process Research & Development.

[6]  M. Syamlal,et al.  Improved analytical energy balance model for evaluating agglomeration from a binary collision of identical wet particles , 2020 .

[7]  J. Chaouki,et al.  The development of industrial (thermal) processes in the context of sustainability: The case for microwave heating , 2020 .

[8]  J. Chaouki,et al.  Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor , 2018, Chemical Engineering Science.

[9]  S. S. Daood,et al.  Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: A review , 2018, Fuel.

[10]  C. M. Boyce,et al.  Gas-solid fluidization with liquid bridging: A review from a modeling perspective , 2018, Powder Technology.

[11]  J. Karl,et al.  Application of chemical equilibrium calculations for the prediction of ash-induced agglomeration , 2018, Biomass Conversion and Biorefinery.

[12]  Ng Niels Deen,et al.  Numerical investigation of collision dynamics of wet particles via force balance , 2018 .

[13]  Yongrong Yang,et al.  Particle agglomeration and control of gas-solid fluidized bed reactor with liquid bridge and solid bridge coupling actions , 2017 .

[14]  R. Hughes,et al.  Improvement of Oxy-FBC Using Oxygen Carriers: Concept and Combustion Performance , 2017 .

[15]  Ng Niels Deen,et al.  Collision dynamics of wet solids: Rebound and rotation , 2017 .

[16]  Dingena L. Schott,et al.  Automated discrete element method calibration using genetic and optimization algorithms , 2017 .

[17]  Zhi Wang,et al.  Influence of Particle Size Distribution on Agglomeration/defluidization of Iron Powders at Elevated Temperature , 2017 .

[18]  J. Chaouki,et al.  Effects of temperature, pressure, and interparticle forces on the hydrodynamics of a gas-solid fluidized bed , 2017 .

[19]  Kevin M. Kellogg,et al.  Method of quantifying surface roughness for accurate adhesive force predictions , 2017 .

[20]  Malin Hanning,et al.  Oxygen Carrier Aided Combustion (OCAC) of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material , 2016 .

[21]  L. Ricardez‐Sandoval,et al.  Experimental Assessment, Model Validation, and Uncertainty Quantification of a Pilot-Scale Gasifier , 2016 .

[22]  Stefan Heinrich,et al.  Experimental study of oblique impact of particles on wet surfaces , 2016 .

[23]  Stefan Heinrich,et al.  Coefficient of restitution for particles impacting on wet surfaces: An improved experimental approach , 2016 .

[24]  T. Müller,et al.  Influence of the liquid film thickness on the coefficient of restitution for wet particles. , 2016, Physical review. E.

[25]  Ng Niels Deen,et al.  A novel approach to determine wet restitution coefficients through a unified correlation and energy analysis , 2015 .

[26]  Henrik Thunman,et al.  Ash Properties of Ilmenite Used as Bed Material for Combustion of Biomass in a Circulating Fluidized Bed Boiler , 2014 .

[27]  J. Chaouki,et al.  Local characterization of a gas–solid fluidized bed in the presence of thermally induced interparticle forces , 2014 .

[28]  P. Kosinski,et al.  Micromechanics of agglomeration forced by the capillary bridge: The restitution of momentum , 2013 .

[29]  Kai Huang,et al.  Coefficient of restitution for wet particles. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Kurt A. Talke,et al.  Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[31]  Stefan Heinrich,et al.  Influence of liquid layers on energy absorption during particle impact , 2009 .

[32]  D. Grecov,et al.  A novel coalescence model for binary collision of identical wet particles , 2009 .

[33]  Stefan Heinrich,et al.  Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed , 2009 .

[34]  Freek Kapteijn,et al.  Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention , 2008 .

[35]  Markus Kraft,et al.  Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction , 2007 .

[36]  S. Simons,et al.  Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process. , 2003, Journal of colloid and interface science.

[37]  Robert H. Davis,et al.  Elastohydrodynamic rebound of spheres from coated surfaces , 2002, Journal of Fluid Mechanics.

[38]  Jamal Chaouki,et al.  Gas and solids between dynamic bubble and emulsion in gas-fluidized beds , 2001 .

[39]  X. Chateau,et al.  Rupture energy of a pendular liquid bridge , 2001 .

[40]  Roberto Zenit,et al.  Particle–wall collisions in a viscous fluid , 2001, Journal of Fluid Mechanics.

[41]  X. Chateau,et al.  Liquid Bridge between Two Moving Spheres: An Experimental Study of Viscosity Effects. , 2000, Journal of colloid and interface science.

[42]  Cor M. van den Bleek,et al.  Early warning of agglomeration in fluidized beds by attractor comparison , 2000 .

[43]  Jonathan Seville,et al.  Capillary Bridges between Two Spherical Bodies , 2000 .

[44]  Jamal Chaouki,et al.  Characterization of dynamic gas–solid distribution in fluidized beds , 2000 .

[45]  S. Simons,et al.  Direct observations of liquid binder–particle interactions: the role of wetting behaviour in agglomerate growth , 2000 .

[46]  Rj Fairbrother,et al.  Modelling of Binder-Induced Agglmeration , 1998 .

[47]  J. Litster,et al.  Fluidized drum granulation : studies of agglomerate formation , 1996 .

[48]  Jpk Seville,et al.  An analysis of the rupture energy of pendular liquid bridges , 1994 .

[49]  B. J. Ennis,et al.  A microlevel-based characterization of granulation phenomena , 1991 .

[50]  Robert H. Davis,et al.  Elastohydrodynamic collision and rebound of spheres: Experimental verification , 1988 .

[51]  M. Matthewson Adhesion of spheres by thin liquid films , 1988 .

[52]  E. J. Hinch,et al.  The elastohydrodynamic collision of two spheres , 1986, Journal of Fluid Mechanics.

[53]  C. Wen,et al.  A generalized method for predicting the minimum fluidization velocity , 1966 .

[54]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[55]  F. Maio,et al.  Capillary Interaction in DEM Simulations of Wet Particulate Materials , 2018 .

[56]  James D. Litster,et al.  Population balance modelling of drum granulation of materials with wide size distribution , 1995 .

[57]  M. Jansen,et al.  Monte Carlo estimation of uncertainty contributions from several independent multivariate sources. , 1994 .

[58]  Bryan J. Ennis,et al.  The influence of viscosity on the strength of an axially strained pendular liquid bridge , 1990 .

[59]  John G. Yates,et al.  Fine particle effects in a fluidized-bed reactor , 1986 .

[60]  P. Rowe,et al.  The division of gas between bubble and interstitial phases in fluidised beds of fine powders , 1978 .