Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2.

Stylianos Michalakis1, Lior Shaltiel1, Vithiyanjali Sothilingam2, Susanne Koch1, Verena Schludi1, Stefanie Krause1, Christina Zeitz3,4,5, Isabelle Audo3,4,5,6,7, Marie-Elise Lancelot3,4,5, Christian Hamel8, Isabelle Meunier8, Markus N. Preising9, Christoph Friedburg9, Birgit Lorenz9, Nawal Zabouri10, Silke Haverkamp10, Marina Garcia Garrido2, Naoyuki Tanimoto2, Mathias W. Seeliger2, Martin Biel1 and Christian A. Wahl-Schott1,∗

[1]  N. Tanimoto,et al.  Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. , 2012, Human molecular genetics.

[2]  J. Ammermüller,et al.  The absence of Complexin 3 and Complexin 4 differentially impacts the ON and OFF pathways in mouse retina , 2012, The European journal of neuroscience.

[3]  Yingbin Fu,et al.  Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of Leber congenital amaurosis. , 2012, Investigative ophthalmology & visual science.

[4]  C. Westall,et al.  A novel p.Gly603Arg mutation in CACNA1F causes Åland island eye disease and incomplete congenital stationary night blindness phenotypes in a family , 2011, Molecular vision.

[5]  Gary Matthews,et al.  The diverse roles of ribbon synapses in sensory neurotransmission , 2010, Nature Reviews Neuroscience.

[6]  B. Lorenz,et al.  Fundus autofluorescence in carriers of choroideremia and correlation with electrophysiologic and psychophysical data. , 2009, Ophthalmology.

[7]  U. Wolfrum,et al.  Effects of Presynaptic Mutations on a Postsynaptic Cacna1s Calcium Channel Colocalized with Mglur6 at Mouse Photoreceptor Ribbon Synapses , 2008 .

[8]  W. Stell,et al.  Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2 , 2008, PloS one.

[9]  M. A. Raven,et al.  Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology , 2008, The Journal of comparative neurology.

[10]  A. de la Chapelle,et al.  A novel CACNA1F gene mutation causes Aland Island eye disease. , 2007, Investigative ophthalmology & visual science.

[11]  C. Wahl-Schott,et al.  Switching off calcium-dependent inactivation in l-type calcium channels by an autoinhibitory domain , 2006, Proceedings of the National Academy of Sciences.

[12]  B. Migeon The role of X inactivation and cellular mosaicism in women's health and sex-specific diseases. , 2006, JAMA.

[13]  J. Isosomppi,et al.  X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene , 2006, Journal of Medical Genetics.

[14]  J. Heckenlively,et al.  The nob2 mouse, a null mutation in Cacna1f: Anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses , 2006, Visual Neuroscience.

[15]  Wallace B. Thoreson,et al.  Synaptic transmission at retinal ribbon synapses , 2005, Progress in Retinal and Eye Research.

[16]  Francois Tremblay,et al.  Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. , 2005, Human molecular genetics.

[17]  P. Dearden,et al.  A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Haverkamp,et al.  Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. , 2005, Investigative ophthalmology & visual science.

[19]  E. Mitchell,et al.  Clinical manifestations of a unique X‐linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2 , 2005, Clinical & experimental ophthalmology.

[20]  E. Gundelfinger,et al.  Molecular dissection of the photoreceptor ribbon synapse , 2005, The Journal of cell biology.

[21]  K. Yau,et al.  Impaired Channel Targeting and Retinal Degeneration in Mice Lacking the Cyclic Nucleotide-Gated Channel Subunit CNGB1 , 2005, The Journal of Neuroscience.

[22]  B. Lorenz,et al.  Fundus autofluorescence in carriers of X-linked recessive retinitis pigmentosa associated with mutations in RPGR, and correlation with electrophysiological and psychophysical data , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[23]  Aaron M. Beedle,et al.  The CACNA1F Gene Encodes an L-Type Calcium Channel with Unique Biophysical Properties and Tissue Distribution , 2004, The Journal of Neuroscience.

[24]  C. Wahl-Schott,et al.  Functional characterization of the L-type Ca2+ channel Cav1.4alpha1 from mouse retina. , 2004, Investigative ophthalmology & visual science.

[25]  J. Le Gargasson,et al.  ERGs in female carriers of incomplete Congenital Stationary Night Blindness (I-CSNB) A family report , 2003, Documenta Ophthalmologica.

[26]  A. Koschak,et al.  Cav1.4α1 Subunits Can Form Slowly Inactivating Dihydropyridine-Sensitive L-Type Ca2+ Channels Lacking Ca2+-Dependent Inactivation , 2003, The Journal of Neuroscience.

[27]  Josef Ammermüller,et al.  The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina , 2003, Neuron.

[28]  H. Wässle,et al.  Immunocytochemical description of five bipolar cell types of the mouse retina , 2003, The Journal of comparative neurology.

[29]  P. Powers,et al.  Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. , 2002, Investigative ophthalmology & visual science.

[30]  B. Reese,et al.  The role of tangential dispersion in retinal mosaic formation , 2002, Progress in Retinal and Eye Research.

[31]  C. Grimm,et al.  New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis , 2001, Nature Genetics.

[32]  K. Boycott,et al.  A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants , 2001, Human Genetics.

[33]  T. Meitinger,et al.  An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness , 1998, Nature Genetics.

[34]  B. Reese,et al.  Clonal boundary analysis in the developing retina using X-inactivation transgenic mosaic mice. , 1998, Seminars in cell & developmental biology.

[35]  S K Fisher,et al.  Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. , 1998, Investigative ophthalmology & visual science.

[36]  A. Harvey,et al.  Radial and tangential dispersion patterns in the mouse retina are cell-class specific. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Molday,et al.  Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. , 1983, Biochemistry.

[38]  N. Tanimoto,et al.  Vision tests in the mouse: Functional phenotyping with electroretinography. , 2009, Frontiers in bioscience.

[39]  G. Fishman,et al.  Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. , 1998, Nature genetics.