Wafer-Level Vacuum Sealing by Transfer Bonding of Silicon Caps for Small Footprint and Ultra-Thin MEMS Packages

Vacuum and hermetic packaging is a critical requirement for optimal performance of many micro-electro-mechanical systems (MEMS), vacuum electronics, and quantum devices. However, existing packaging solutions are either elaborate to implement or rely on bulky caps and footprint-consuming seals. Here, we address this problem by demonstrating a wafer-level vacuum packaging method featuring transfer bonding of 25-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-thin silicon (Si) caps that are transferred from a 100-mm-diameter silicon-on-insulator (SOI) wafer to a cavity wafer to seal the cavities by gold–aluminum (Au–Al) thermo-compression bonding at a low temperature of 250 °C. The resulting wafer-scale sealing yields after wafer dicing are 98% and 100% with sealing rings as narrow as 6 and 9 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>, respectively. Despite the small sealing footprint, the Si caps with 9-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-wide sealing rings demonstrate a high mean shear strength of 127 MPa. The vacuum levels in the getter-free sealed cavities are measured by residual gas analysis to be as low as 1.3 mbar, based on which a leak rate smaller than <inline-formula> <tex-math notation="LaTeX">${2.8}\times {10}^{-14}$ </tex-math></inline-formula> mbarL/s is derived. We also show that the thickness of the Si caps can be reduced to 6 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> by post-transfer etching while still maintaining excellent hermeticity. The demonstrated ultra-thin packages can potentially be placed in between the solder bumps in flip–chip interfaces, thereby avoiding the need of through-cap-vias in conventional MEMS packages. [2018-0257]

[1]  H. F. Winters,et al.  GAS INCORPORATION INTO SPUTTERED FILMS. , 1967 .

[2]  Mario Di Giovanni,et al.  Flat and Corrugated Diaphragm Design Handbook , 1982 .

[3]  D. W. Burns,et al.  Planar processed polysilicon sealed cavities for pressure transducer arrays , 1984, 1984 International Electron Devices Meeting.

[4]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication , 1994 .

[5]  R. Howe,et al.  Vacuum encapsulation of resonant devices using permeable polysilicon , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[6]  Roland W. Gooch,et al.  Wafer-level vacuum packaging for MEMS , 1999 .

[7]  T. Kenny,et al.  New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[8]  Toshiyuki Tsuchiya,et al.  Polysilicon vibrating gyroscope vacuum-encapsulated in an on-chip micro chamber , 2001 .

[9]  T. Verhoeven,et al.  High-Q FBAR filters in a wafer-level chip-scale package , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[10]  Khalil Najafi Micropackaging Technologies for Integrated Microsystems: Applications to MEMS and MOEMS , 2003, SPIE MOEMS-MEMS.

[11]  D. Feld,et al.  A wafer level encapsulated FBAR chip molded into a 2.0 mm /spl times/ 1.6 mm plastic package for use as a PCS full band Tx filter , 2003, IEEE Symposium on Ultrasonics, 2003.

[12]  Satoshi Shigematsu,et al.  A Sealing Technique for Stacking MEMS on LSI Using Spin-Coating Film Transfer and Hot Pressing , 2003 .

[13]  A. Jourdain,et al.  Optimization of 0-level packaging for RF-MEMS devices , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[14]  Ann Witvrouw,et al.  Stable thin film encapsulation of acceleration sensors using polycrystalline silicon as sacrificial and encapsulation layer , 2004 .

[15]  C T Pan Selective low temperature microcap packaging technique through flip chip and wafer level alignment , 2004 .

[16]  K. Najafi,et al.  Transfer of metal MEMS packages using a wafer-level solder transfer technique , 2005, IEEE Transactions on Advanced Packaging.

[17]  Eun Sok Kim,et al.  Film transfer and bonding techniques for covering single-chip ejector array with microchannels and reservoirs , 2005 .

[18]  A. Jourdain,et al.  Mechanical and electrical characterization of BCB as a bond and seal material for cavities housing (RF-)MEMS devices , 2005 .

[19]  N. Rolland,et al.  Packaging methodology for RF devices using a BCB membrane transfer technique , 2006 .

[21]  R. Gutmann,et al.  Adhesive wafer bonding , 2006 .

[22]  J. Ebel,et al.  Thin-Film Encapsulated RF MEMS Switches , 2007, Journal of Microelectromechanical Systems.

[23]  Thin Filmencapsulation of microstructures using Sacrificial CF-Polymer , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[24]  A Novel Low-Temperature Microcap Packaging using SU-8 Bonding , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[25]  C.H. Yun,et al.  AL to AL wafer bonding for MEMS encapsulation and 3-D interconnect , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[26]  Welch,et al.  Vacuum and Hermetic Packaging of MEMS using Solder , 2008 .

[27]  Bongtae Han,et al.  On Ultra-Fine Leak Detection of Hermetic Wafer Level Packages , 2008, IEEE Transactions on Advanced Packaging.

[28]  G. Stemme,et al.  Room-Temperature Sealing of Microcavities by Cold Metal Welding , 2009, Journal of Microelectromechanical Systems.

[29]  M. Esashi,et al.  Wafer level packaging of MEMS , 2008, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[30]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[31]  C. Ferrandon,et al.  Hermetic wafer-level packaging development for RF MEMS switch , 2010, 3rd Electronics System Integration Technology Conference ESTC.

[32]  A novel wafer level bonding/debonding technique using an anti-adhesion layer for polymer-based zero-level packaging of RF device , 2010, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC).

[33]  F. Parrain,et al.  MEMS packaging process by film transfer using an anti-adhesive layer , 2010, DTIP 2010.

[34]  Vadim V. Silberschmidt,et al.  Intermetallic phase transformations in Au–Al wire bonds , 2011 .

[35]  J. F. Creemer,et al.  Tube-shaped Pirani gauge for in situ hermeticity monitoring of SiN thin-film encapsulation , 2012 .

[36]  K. Schjølberg-Henriksen,et al.  Al-Al thermocompression bonding for wafer-level MEMS packaging , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[37]  Mikael Antelius,et al.  Wafer-scale Vacuum and Liquid Packaging Concepts for an Optical Thin-film Gas Sensor , 2013 .

[38]  S. Garbe,et al.  Residual gases in vacuum systems , 1960 .

[39]  K. Schjølberg-Henriksen,et al.  Al-Al thermocompression bonding for wafer-level MEMS sealing , 2013 .

[40]  S. L. Chua,et al.  TSV-less 3D stacking of MEMS and CMOS via low temperature Al-Au direct bonding with simultaneous formation of hermetic seal , 2014, 2014 IEEE 64th Electronic Components and Technology Conference (ECTC).

[41]  Masayoshi Esashi,et al.  Wafer-level selective transfer method for FBAR-LSI Integration , 2014, 2014 IEEE International Frequency Control Symposium (FCS).

[42]  Niclas Roxhed,et al.  CMOS-Integrated Si/SiGe Quantum-Well Infrared Microbolometer Focal Plane Arrays Manufactured With Very Large-Scale Heterogeneous 3-D Integration , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Göran Stemme,et al.  Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter. , 2015, Optics letters.

[44]  T. Gessner,et al.  Low-Temperature Wafer Bonding Using Solid-Liquid Inter-Diffusion Mechanism , 2015, Journal of Microelectromechanical Systems.

[45]  Niclas Roxhed,et al.  Integrating MEMS and ICs , 2015 .

[46]  Thor Bakke,et al.  Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding , 2016, Micromachines.

[47]  Seonho Seok Fabrication and Modeling of Nitride Thin-Film Encapsulation Based on Anti-Adhesion-Assisted Transfer Technique and Nitride/BCB Bilayer Wrinkling , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[48]  Hsien-Chie Cheng,et al.  The mechanical, thermodynamic, and electronic properties of cubic Au4Al crystal via first-principles calculations , 2016 .

[49]  Christian Ehrhardt,et al.  The reliability of wire bonding using Ag and Al , 2016, Microelectron. Reliab..

[50]  Ming C. Wu,et al.  Flip Chip Packaging of Digital Silicon Photonics MEMS Switch for Cloud Computing and Data Centre , 2017, IEEE Photonics Journal.

[51]  S. J. Bleiker,et al.  Wafer-Level Vacuum Packaging Enabled by Plastic Deformation and Low-Temperature Welding of Copper Sealing Rings With a Small Footprint , 2017, Journal of Microelectromechanical Systems.

[52]  Y. Omura,et al.  Wafer-level hermetic vacuum packaging by bonding with a copper–tin thin film sealing ring , 2018 .

[53]  Dinesh Pamunuwa,et al.  Performance Analysis of Nanoelectromechanical Relay-Based Field-Programmable Gate Arrays , 2018, IEEE Access.

[54]  Jian Lu,et al.  Brittle-to-ductile transition of Au2Al and AuAl2 intermetallic compounds in wire bonding , 2018, Journal of Materials Science: Materials in Electronics.