The distribution and frequency of microsatellite loci in Drosophila melanogaster

We report the results of a comprehensive search of Drosophila melanogaster DNA sequences in GenBank for di‐, tri‐, and tetranucleotide repeats of more than four repeat units, and a DNA library screen for dinucleotide repeats. Dinucleotide repeats are more abundant (66%) than tri‐ (30%) or tetranucleotide (4%) repeats. We estimate that 1917 dinucleotide repeats with 10 or more repeat units are present in the euchromatic D. melanogaster genome and, on average, they occur once every 60 kb. Relative to many other animals, dinucleotide repeats in D. melanogaster are short. Tri‐ and tetranucleotide repeats have even fewer repeat units on average than dinucleotide repeats. Our WorldWide Web site (http://www.bio.cornell.edu/genetics/aquadro/aquadro.html) posts the complete list of 1298 microsatellites (≥ five repeat units) identified from the GenBank search. We also summarize assay conditions for 70 D. melanogaster microsatellites characterized in previous studies and an additional 56 newly characterized markers.

[1]  A. Rich,et al.  (dC‐dA)n.(dG‐dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. , 1987, The EMBO journal.

[2]  Y. Michalakis,et al.  Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. , 1996, Genetics.

[3]  J. Cornuet,et al.  Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. , 1993, Nucleic acids research.

[4]  H. Ellegren,et al.  Cloning of highly polymorphic microsatellites in the horse. , 2009, Animal genetics.

[5]  P. Jarne,et al.  Microsatellites, from molecules to populations and back. , 1996, Trends in ecology & evolution.

[6]  D N Stivers,et al.  Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Tautz,et al.  Cryptic simplicity in DNA is a major source of genetic variation , 1986, Nature.

[8]  R. Frankham,et al.  Microsatellite polymorphisms in a wild population of Drosophila melanogaster. , 1996, Genetical research.

[9]  G. Gloor,et al.  Type I repressors of P element mobility. , 1993, Genetics.

[10]  E. Lewis,et al.  Complete sequence of the bithorax complex of Drosophila. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Weber Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. , 1990, Genomics.

[12]  Tomas A. Prolla,et al.  Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair , 1993, Nature.

[13]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[14]  S. Twiss,et al.  Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies , 1995, Molecular ecology.

[15]  D. Goldstein,et al.  Microsatellite variation in North American populations of Drosophila melanogaster. , 1995, Nucleic acids research.

[16]  D. Begun,et al.  RFLP analysis using heterologous probes. , 1992 .

[17]  L. Jin,et al.  The exact numbers of possible microsatellite motifs. , 1994, American journal of human genetics.

[18]  D. Tautz,et al.  Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. , 1997, Genetics.

[19]  A. Estoup,et al.  Unusually high frequency of (CT)n and (GT)n microsatellite loci in a yellowjacket wasp, Vespula rufa (L.) (Hymenoptera: Vespidae) , 1995, Insect molecular biology.

[20]  A. Rich,et al.  Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination , 1989, Molecular and cellular biology.

[21]  F. Bonhomme,et al.  Development and use of microsatellite markers in sea bass, Dicentrarchus labrax (Linnaeus, 1758) (Perciformes: Serrandidae). , 1995, Molecular marine biology and biotechnology.

[22]  C. E. Hildebrand,et al.  Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. , 1991, Genomics.

[23]  C. Aquadro,et al.  Selection, Recombination, and DNA Polymorphism in Drosophila , 1994 .

[24]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[25]  D. Tautz,et al.  Simple sequences are ubiquitous repetitive components of eukaryotic genomes. , 1984, Nucleic acids research.

[26]  D. Tautz Hypervariability of simple sequences as a general source for polymorphic DNA markers. , 1989, Nucleic acids research.

[27]  J. Rine,et al.  Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. , 1993, Genomics.

[28]  T. Mackay,et al.  Low mutation rates of microsatellite loci in Drosophila melanogaster , 1997, Nature Genetics.

[29]  I. Stirling,et al.  Microsatellite analysis of population structure in Canadian polar bears , 1995, Molecular ecology.

[30]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[31]  J. Weber,et al.  Survey of human and rat microsatellites. , 1992, Genomics.

[32]  A. Estoup,et al.  (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout) , 1993, Heredity.

[33]  P. Bentzen,et al.  Organization of Microsatellites Differs between Mammals and Cold-water Teleost Fishes , 1994 .

[34]  G. Rubin,et al.  The Role of the Genome Project in Determining Gene Function: Insights from Model Organisms , 1996, Cell.

[35]  K. Wetterstrand Microsatellite polymorphism and divergence in worldwide populations of Drosophila melanogaster and D.simulans , 1997 .

[36]  K. Scribner,et al.  Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications , 1996 .