Drift estimation on non compact support for diffusion models

Abstract We study non parametric drift estimation for an ergodic diffusion process from discrete observations. The drift is estimated on a set A using an approximate regression equation by a least squares contrast, minimized over finite dimensional subspaces of L 2 ( A , d x ) . The novelty is that the set A is non compact and the diffusion coefficient unbounded. Risk bounds of a L 2 -risk are provided where new variance terms are exhibited. A data-driven selection procedure is proposed where the dimension of the projection space is chosen within a random set contrary to usual selection procedures.

[1]  R. Nickl,et al.  NONPARAMETRIC STATISTICAL INFERENCE FOR DRIFT VECTOR FIELDS OF MULTI-DIMENSIONAL , 2019 .

[2]  E. Rio,et al.  Concentration around the mean for maxima of empirical processes , 2005, math/0506594.

[3]  Peter C. Kiessler,et al.  Statistical Inference for Ergodic Diffusion Processes , 2006 .

[4]  Albert Cohen,et al.  Correction to: On the Stability and Accuracy of Least Squares Approximations , 2018, Foundations of Computational Mathematics.

[5]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[6]  Jack Indritz,et al.  An inequality for Hermite polynomials , 1961 .

[7]  C. Strauch Sharp adaptive drift estimation for ergodic diffusions: The multivariate case , 2015 .

[8]  REGRESSION FUNCTION ESTIMATION ON NON COMPACT SUPPORT AS A PARTLY INVERSE PROBLEM , 2018 .

[9]  Arnak Dalalyan Sharp adaptive estimation of the drift function for ergodic diffusions , 2005 .

[10]  Y. Baraud Model selection for regression on a random design , 2002 .

[11]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[12]  J. Kingman,et al.  Random walks with stationary increments and renewal theory , 1979 .

[13]  Marc Hoffmann,et al.  Adaptive estimation in diffusion processes , 1999 .

[14]  P. Massart,et al.  Minimal Penalties for Gaussian Model Selection , 2007 .

[15]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[16]  Marianna Pensky,et al.  Laplace deconvolution on the basis of time domain data and its application to dynamic contrast‐enhanced imaging , 2014, 1405.7107.

[17]  Nonparametric Laguerre estimation in the multiplicative censoring model , 2016 .

[18]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[19]  C. Strauch Exact adaptive pointwise drift estimation for multidimensional ergodic diffusions , 2016 .

[20]  Lianfen Qian,et al.  Nonparametric Curve Estimation: Methods, Theory, and Applications , 1999, Technometrics.

[21]  G. Viennet Inequalities for absolutely regular sequences: application to density estimation , 1997 .

[22]  A. Veretennikov,et al.  Bounds for the Mixing Rate in the Theory of Stochastic Equations , 1988 .

[23]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[24]  Y. Baraud,et al.  ADAPTIVE ESTIMATION IN AUTOREGRESSION OR β-MIXING REGRESSION VIA MODEL SELECTION By , 2001 .

[25]  G. Mabon Adaptive Deconvolution on the Non‐negative Real Line , 2017 .

[26]  Adaptive Laguerre density estimation for mixed Poisson models , 2015 .

[27]  F. Comte,et al.  Regression function estimation as a partly inverse problem , 2020, Annals of the Institute of Statistical Mathematics.

[28]  E. Pardoux,et al.  On the Poisson Equation and Diffusion Approximation. I Dedicated to N. v. Krylov on His Sixtieth Birthday , 2001 .

[29]  M. Hoffmann,et al.  Nonparametric estimation of scalar diffusions based on low frequency data , 2002, math/0503680.

[30]  Yves Rozenholc,et al.  Penalized nonparametric mean square estimation of the coefficients of diffusion processes , 2007, 0708.4165.

[31]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[32]  Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient , 2000 .

[33]  C. Strauch,et al.  Sup-norm adaptive simultaneous drift estimation for ergodic diffusions , 2018, 1808.10660.

[34]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[35]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[36]  Regression function estimation on non compact support in an heteroscesdastic model , 2020, Metrika.

[37]  Vladimir Spokoiny,et al.  Adaptive drift estimation for nonparametric diffusion model , 2000 .

[38]  M. Hoffmann Statistical Methods for Stochastic Differential Equations , 2013 .