On an explicit representation of the Łukasiewicz sum as a quantum operation

The aim of this work is to introduce a quantum operation able to implement, in an approximate way, the Łukasiewicz sum in the framework of quantum computation. Different techniques for improving this approximation are studied, and in particular, the use of quantum cloning machine is considered.

[1]  Contextual, optimal, and universal realization of the quantum cloning machine and of the NOT gate. , 2003, Physical review letters.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  Li Jing,et al.  Quantum cloning machines and the applications , 2013, 1301.2956.

[4]  Daniele Mundici Ulam Games, Lukasiewicz Logic, and AF C*-Algebras , 1993, Fundam. Informaticae.

[5]  D. Dieks Communication by EPR devices , 1982 .

[6]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[7]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[8]  Mark Hillery,et al.  UNIVERSAL OPTIMAL CLONING OF ARBITRARY QUANTUM STATES : FROM QUBITS TO QUANTUM REGISTERS , 1998 .

[9]  Eugene L. Lawler,et al.  An Algorithm for "Ulam's Game" and its Application to Error Correcting Codes , 1995, Inf. Process. Lett..

[10]  Félix Bou,et al.  On some properties of quasi-MV algebras and $$\sqrt{^{\prime}}$$ quasi-MV algebras. Part II , 2008, Soft Comput..

[11]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[13]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[14]  Hector Freytes,et al.  Representing continuous t-norms in quantum computation with mixed states , 2010 .

[15]  M Ricci,et al.  Teleportation scheme implementing the universal optimal quantum cloning machine and the universal NOT gate. , 2004, Physical review letters.

[16]  Vasily E. Tarasov Quantum computer with mixed states and four-valued logic , 2002 .

[17]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[18]  MV-Observables and MV-Algebras , 2001 .

[19]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[20]  Roberto Giuntini,et al.  Holistic logical arguments in quantum computation , 2016, 1602.07516.

[21]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[22]  Madan M. Gupta,et al.  On the principles of fuzzy neural networks , 1994 .

[23]  Anatolij Dvurečenskij Effect Algebras Which Can Be Covered by MV-Algebras , 2002 .

[24]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[25]  Giuseppe Sergioli,et al.  Towards Quantum Computational Logics , 2010 .

[26]  Hector Freytes,et al.  Fuzzy Propositional Logic Associated with Quantum Computational Gates , 2006 .

[27]  Hector Freytes,et al.  Quantum computational logic with mixed states , 2010, Math. Log. Q..

[28]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[29]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[30]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[31]  Gianpiero Cattaneo,et al.  Quantum computational structures , 2004 .