Improving the dynamics of quantum sensors with reinforcement learning

Recently proposed quantum-chaotic sensors achieve quantum enhancements in measurement precision by applying nonlinear control pulses to the dynamics of the quantum sensor while using classical initial states that are easy to prepare. Here, we use the cross entropy method of reinforcement learning to optimize the strength and position of control pulses. Compared to the quantum-chaotic sensors in the presence of superradiant damping, we find that decoherence can be fought even better and measurement precision can be enhanced further by optimizing the control. In some examples, we find enhancements in sensitivity by more than an order of magnitude. By visualizing the evolution of the quantum state, the mechanism exploited by the reinforcement learning method is identified as a kind of spin-squeezing strategy that is adapted to the superradiant damping.

[1]  T. S. Mahesh,et al.  NMR studies of quantum chaos in a two-qubit kicked top. , 2018, Physical review. E.

[2]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[3]  Richard S. Sutton,et al.  Reinforcement Learning is Direct Adaptive Optimal Control , 1992, 1991 American Control Conference.

[4]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[5]  C. Helstrom Quantum detection and estimation theory , 1969 .

[6]  Lukas J. Fiderer,et al.  Quantum metrology with quantum-chaotic sensors , 2018, Nature Communications.

[7]  Barry C. Sanders,et al.  Machine Learning for Adaptive Quantum Measurement , 2010, 2010 Seventh International Conference on Information Technology: New Generations.

[8]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[9]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[10]  Michael J. Watts,et al.  IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS Publication Information , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[11]  B. M. Fulk MATH , 1992 .

[12]  Xin Wang,et al.  Transferable control for quantum parameter estimation through reinforcement learning , 2019, 1904.11298.

[13]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[14]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[15]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[16]  M. G. Mylroi Control Theory , 1969, Nature.

[17]  Jing Liu,et al.  Control-enhanced multiparameter quantum estimation , 2017, 1710.06741.

[18]  M. Pollack Journal of Artificial Intelligence Research: Preface , 2001 .

[19]  Barry C. Sanders,et al.  An efficient algorithm for optimizing adaptive quantum metrology processes , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[20]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[21]  Enrique Solano,et al.  Measurement-based adaptation protocol with quantum reinforcement learning , 2018, Quantum Reports.

[22]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[23]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[24]  C. Fabre,et al.  Observation of Near-Infrared Dicke Superradiance on Cascading Transitions in Atomic Sodium , 1976 .

[25]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[26]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[27]  P. Jessen,et al.  Quantum signatures of chaos in a kicked top , 2009, Nature.

[28]  D. Braun,et al.  Quantifying quantumness and the quest for Queens of Quantum , 2010, 1002.2158.

[29]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[30]  David B. Janes,et al.  PHYSICAL REVIEW APPLIED 10 , 064029 ( 2018 ) Correlating Electronic Transport and 1 / f Noise in MoSe 2 Field-Effect Transistors , 2018 .

[31]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[32]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[33]  Lukas J. Fiderer,et al.  A quantum-chaotic cesium-vapor magnetometer , 2019, OPTO.

[34]  D. Braun,et al.  Classicality of spin states , 2008, 0805.2592.

[35]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[36]  Pieter-Tjerk de Boer,et al.  Annals of Operations Research , 2005 .

[37]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[38]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[39]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[40]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[41]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[42]  Daniel Braun,et al.  Dissipative Quantum Chaos and Decoherence , 2001 .

[43]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[44]  Nathan Wiebe,et al.  Experimental Phase Estimation Enhanced By Machine Learning , 2017, Physical Review Applied.

[45]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[46]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[47]  Haidong Yuan,et al.  Quantum parameter estimation with optimal control , 2016, 1604.04856.

[48]  Serge Haroche,et al.  Superradiance: An essay on the theory of collective spontaneous emission , 1982 .

[49]  Frank K. Wilhelm,et al.  Characterization of decohering quantum systems: Machine learning approach , 2015, 1510.05655.

[50]  Joel Johansson,et al.  Quantum error correction for the toric code using deep reinforcement learning , 2018, Quantum.

[51]  A. Polkovnikov,et al.  Asymptotic Prethermalization in Periodically Driven Classical Spin Chains. , 2018, Physical review letters.

[52]  R. Bonifacio,et al.  Quantum Statistical Theory of Superradiance. II , 1971 .

[53]  F. Haake,et al.  WKB for a damped spin , 1998, chao-dyn/9805018.

[54]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[55]  Neil B. Lovett,et al.  Differential evolution for many-particle adaptive quantum metrology. , 2013, Physical review letters.