A posteriori error estimates for nonlinear problems

We give a general framework for deriving a posteriori error estimates for approximate solutions of nonlinear problems. In a first step it is proven that the error of the approximate solution can be bounded from above and from below by an appropriate norm of its residual. In a second step this norm of the residual is bounded from above and from below by a similar norm of a suitable finite-dimensional approximation of the residual. This quantity can easily be evaluated, and for many practical applications sharp explicit upper and lower bounds are readily obtained. The general results are then applied to finite element discretizations of scalar quasi-linear elliptic partial differential equations of 2nd order, the eigenvalue problem for scalar linear elliptic operators of 2nd order, and the stationary incompressible Navier-Stokes equations. They immediately yield a posteriori error estimates, which can easily be computed from the given data of the problem and the computed numerical solution and which give global upper and local lower bounds on the error of the numerical solution.

[1]  Werner C. Rheinboldt,et al.  On a Theory of Mesh-Refinement Processes , 1980 .

[2]  Kenneth Eriksson Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .

[3]  J. Rappaz,et al.  On numerical approximation in bifurcation theory , 1990 .

[4]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[5]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[6]  J. Baranger,et al.  Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens , 1991 .

[7]  Khalid Ansar Haque,et al.  Recent experiences with error estimation and adaptivity , 1991 .

[8]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[9]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[10]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[11]  O. C. Zienkiewicz,et al.  Adaptive techniques in the finite element method , 1988 .

[12]  Ivo Babuška,et al.  Basic principles of feedback and adaptive approaches in the finite element method , 1986 .

[13]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[14]  Ricardo G. Durán,et al.  On the asymptotic exactness of Bank-Weiser's estimator , 1992 .

[15]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[16]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[17]  J. T. Oden,et al.  A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .