Factorial ANOVA with unbalanced data: A fresh look at the types of sums of squares
暂无分享,去创建一个
[1] P. Lachenbruch. Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .
[2] David C. Howell,et al. Nonorthogonal Analysis of Variance: Putting the Question before the Answer , 1982 .
[3] S. von Felten,et al. Analysis of variance with unbalanced data: an update for ecology & evolution. , 2010, The Journal of animal ecology.
[4] J. Lewsey,et al. A STUDY OF TYPE II AND TYPE III POWER FOR TESTING HYPOTHESES FROM UNBALANCED FACTORIAL DESIGNS , 2001 .
[5] John A. Nelder,et al. The Computer Analysis of Factorial Experiments: In Memoriam—Frank Yates , 1995 .
[6] Mark I. Appelbaum,et al. Nonorthogonal analysis of variance--once again. , 1980 .
[7] Frank Yates,et al. The Analysis of Multiple Classifications with Unequal Numbers in the Different Classes , 1934 .
[8] Øyvind Langsrud,et al. ANOVA for unbalanced data: Use Type II instead of Type III sums of squares , 2003, Stat. Comput..
[9] R. R. Hocking,et al. Methods of Analysis of Linear Models with Unbalanced Data , 1978 .
[10] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.
[11] P. Gallo. CENTER-WEIGHTING ISSUES IN MULTICENTER CLINICAL TRIALS , 2000, Journal of biopharmaceutical statistics.
[12] Sanford Weisberg,et al. An R Companion to Applied Regression , 2010 .
[13] Ruth G. Shaw,et al. Anova for Unbalanced Data: An Overview , 1993 .
[14] S. Weiss,et al. Gambling behaviors of former athletes: the delayed competitive effect. , 2008 .
[15] Allan Stewart-Oaten,et al. Rules and judgments in statistics : three examples , 1995 .
[16] J. J. Higgins,et al. Tests of Hypotheses for Unbalanced Factorial Designs Under Various Regression/Coding Method Combinations , 1978 .
[17] S. R. Searle. Comments on J. A. Nelder. ‘The statistics of linear models: back to basics’ , 1995 .
[18] M. Kutner. Hypothesis Testing in Linear Models (Eisenhart Model I) , 1974 .
[19] James E. Carlson,et al. Analysis of nonorthogonal fixed-effects designs. , 1974 .
[20] J. Overall,et al. Concerning least squares analysis of experimental data. , 1969 .
[21] Mark I. Appelbaum,et al. Some problems in the nonorthogonal analysis of variance. , 1974 .
[22] John A. Nelder,et al. The statistics of linear models: back to basics , 1995 .
[23] Deborah A. Prentice,et al. Contrast tests of interaction hypothesis. , 1997 .