Acoustic Based Crosshole Full Waveform Slowness Inversion in the Time Domain
暂无分享,去创建一个
[1] C. Shin,et al. Laplace-domain full-waveform inversion of seismic data lacking low-frequency information , 2012 .
[2] Kok Lay Teo,et al. Optimization and control with applications , 2005 .
[3] R. Pratt. Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .
[4] Ru-Shan Wu,et al. Seismic envelope inversion and modulation signal model , 2014 .
[5] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[6] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[7] Marcus J. Grote,et al. Exact Nonreflecting Boundary Condition For Elastic Waves , 2000, SIAM J. Appl. Math..
[8] R. Gerhard Pratt,et al. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .
[9] A. Tarantola,et al. Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .
[10] P. Mora. Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .
[11] A. Guitton. Blocky regularization schemes for Full‐Waveform Inversion ★ , 2012 .
[12] Simona Perotto,et al. CMFWI: Coupled Multiscenario Full Waveform Inversion , 2017 .
[13] R. Pratt,et al. INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .
[14] Marcos Raydan,et al. The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..
[15] Yunseok Choi,et al. Time-domain full waveform inversion of exponentially damped wavefield using the deconvolution-based objective function , 2018 .
[16] R. Pratt. Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .
[17] Eric T. Chung,et al. Exact nonreflecting boundary conditions for three dimensional poroelastic wave equations , 2014 .
[18] Jean Virieux,et al. An overview of full-waveform inversion in exploration geophysics , 2009 .
[19] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[20] A. Tarantola. A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .
[21] 신창수. Apparatus, methods and recording medium for imaging a subsurface using the waveform inversion in the laplace-fourier domain , 2008 .
[22] Z. M. Song,et al. Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results , 1995 .
[23] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[24] Jeroen Tromp,et al. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .
[25] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[26] Ludovic Métivier,et al. Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations , 2018 .
[27] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[28] C. Vogel,et al. Analysis of bounded variation penalty methods for ill-posed problems , 1994 .
[29] P. Mora. Elastic wave‐field inversion of reflection and transmission data , 1988 .
[30] Improvements to elastic full waveform inversion using cross-gradient constraints , 2016 .
[31] C. Shin,et al. Waveform inversion in the Laplace domain , 2008 .
[32] B. Engquist,et al. Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.
[33] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .