Acoustic Based Crosshole Full Waveform Slowness Inversion in the Time Domain

We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the constrained optimization together which can inverse the slowness effectively. One advantage of slowness inversion is that there is no further approximation in the gradient derivation. Moreover, a new algorithm named the skip method for solving the constrained optimization problem is proposed. The TV regularization has good ability to inverse slowness at its discontinuities while the constrained optimization can keep the inversion converging in the right direction. Numerical computations both for noise free data and noisy data show the robustness and effectiveness of our method and good inversion results are yielded.

[1]  C. Shin,et al.  Laplace-domain full-waveform inversion of seismic data lacking low-frequency information , 2012 .

[2]  Kok Lay Teo,et al.  Optimization and control with applications , 2005 .

[3]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[4]  Ru-Shan Wu,et al.  Seismic envelope inversion and modulation signal model , 2014 .

[5]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[6]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[7]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Condition For Elastic Waves , 2000, SIAM J. Appl. Math..

[8]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[9]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[10]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[11]  A. Guitton Blocky regularization schemes for Full‐Waveform Inversion ★ , 2012 .

[12]  Simona Perotto,et al.  CMFWI: Coupled Multiscenario Full Waveform Inversion , 2017 .

[13]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[14]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[15]  Yunseok Choi,et al.  Time-domain full waveform inversion of exponentially damped wavefield using the deconvolution-based objective function , 2018 .

[16]  R. Pratt Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .

[17]  Eric T. Chung,et al.  Exact nonreflecting boundary conditions for three dimensional poroelastic wave equations , 2014 .

[18]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[19]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[20]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[21]  신창수 Apparatus, methods and recording medium for imaging a subsurface using the waveform inversion in the laplace-fourier domain , 2008 .

[22]  Z. M. Song,et al.  Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results , 1995 .

[23]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[24]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[25]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[26]  Ludovic Métivier,et al.  Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations , 2018 .

[27]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[28]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[29]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .

[30]  Improvements to elastic full waveform inversion using cross-gradient constraints , 2016 .

[31]  C. Shin,et al.  Waveform inversion in the Laplace domain , 2008 .

[32]  B. Engquist,et al.  Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.

[33]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .