Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling

A formulation for the calculation of nuclear magnetic resonance (NMR) shielding tensors, based on density functional theory (DFT), is presented. Scalar-relativistic and spin-orbit coupling effects are taken into account, and a Fermi-contact term is included in the NMR shielding tensor expression. Gauge-including atomic orbitals (GIAO) and a frozen-core approximation are used. This formulation has been implemented, and 1H and 13C NMR shifts of hydrogen and methyl halides have been calculated and show good agreement with experiment. 13C NMR shifts of 5d transition metal carbonyls have been calculated and show improved agreement with experiment over previous scalar-relativistic calculations. For the metal carbonyls it is shown explicitly that the combination of spin-orbit coupling and magnetic field mixes spin triplet states into the ground state, inducing a spin density that then interacts with the nuclei of the metal carbonyl via the Fermi-contact term. Results indicate that the Fermi-contact contribution ...

[1]  H. S. Gutowsky,et al.  ELECTRON DISTRIBUTION IN MOLECULES. II. PROTON AND FLUORINE MAGNETIC RESONANCE SHIFTS IN THE HALOMETHANES , 1953 .

[2]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[3]  Hiroshi Nakatsuji,et al.  SPIN-ORBIT EFFECT ON THE MAGNETIC SHIELDING CONSTANT USING THE AB INITIO UHF METHOD , 1995 .

[4]  J. Griffith,et al.  The Theory of Transition-Metal Ions , 1962 .

[5]  Dennis R. Salahub,et al.  Spin-orbit correction to NMR shielding constants from density functional theory , 1996 .

[6]  G. Schreckenbach,et al.  Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .

[7]  P. V. Schastnev,et al.  Effects of spin-orbital interactions on 13 NMR chemical shifts in halogen-substituted methanes , 1980 .

[8]  Georges Graner The methyl bromide molecule: A critical consideration of perturbations in spectra , 1981 .

[9]  G. te Velde,et al.  Three‐dimensional numerical integration for electronic structure calculations , 1988 .

[10]  E. Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations II. The effect of exchange scaling in some small molecules , 1973 .

[11]  D. Salahub,et al.  Calculations of NMR shielding constants beyond uncoupled density functional theory. IGLO approach , 1993 .

[12]  E. Baerends,et al.  Dissociating energies, vibrational frequencies and 13C NMR chemical shifts of the 18 electron species [M(CO)6]n (M=Hf-Ir, Mo, Tc, Ru, Cr, Mn, Fe). A density functional study. , 1997 .

[13]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[14]  A. Messiah Quantum Mechanics , 1961 .

[15]  T. Hewitt,et al.  Electron-diffraction studies of tetramethylsilane and hexamethyldisilane, and discussion of the lengths of Si-C bonds , 1971 .

[16]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[17]  R. Silverstein,et al.  Spectrometric identification of organic compounds , 2013 .

[18]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[19]  H. Willner,et al.  New homoleptic metal carbonyl cations: the syntheses, vibrational and 13C MAS NMR spectra of hexacarbonyl-ruthenium(II) and-osmium(II) undecafluorodiantimonate(V), [Ru(CO)6][Sb2F11]2 and [Os(CO)6][Sb2F11]2 , 1995 .

[20]  Isao Morishima,et al.  Effect of the heavy atom on the nuclear shielding constant. I. The proton chemical shifts in hydrogen halides , 1973 .

[21]  Four component regular relativistic Hamiltonians and the perturbational treatment of Dirac’s equation , 1995 .

[22]  H. Willner,et al.  Syntheses and Vibrational and (13)C MAS-NMR Spectra of Bis(carbonyl)mercury(II) Undecafluorodiantimonate(V) ([Hg(CO)(2)][Sb(2)F(11)](2)) and of Bis(carbonyl)dimercury(I) Undecafluorodiantimonate ([Hg(2)(CO)(2)][Sb(2)F(11)](2)) and the Molecular Structure of [Hg(CO)(2)][Sb(2)F(11)](2). , 1996, Inorganic chemistry.

[23]  A. Jameson,et al.  Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .

[24]  Dennis R. Salahub,et al.  Calculations of NMR shielding constants by uncoupled density functional theory , 1993 .

[25]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[26]  Vignale,et al.  Density-functional theory in strong magnetic fields. , 1987, Physical review letters.

[27]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[28]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: hydrogen halides , 1996 .

[29]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[30]  J. Duncan Substitution methyl group structures in symmetric top molecules , 1974 .

[31]  H. A. van der Vorst,et al.  Algorithms and applications on vector and parallel computers , 1987 .

[32]  W. Kutzelnigg Ab initio calculation of molecular properties , 1989 .