Tilting modules and a theorem of Hoshino
暂无分享,去创建一个
[1] P. Gabriel,et al. Representations of Algebras , 2018, A Tour of Representation Theory.
[2] P. A. G. Asensio,et al. On torsion theories induced by tilting modules , 1992 .
[3] A. Schofield. TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .
[4] I. Assem,et al. Quadratic forms and iterated tilted algebras , 1990 .
[5] O. Kerner. Tilting Wild Algebras , 1989 .
[6] D. Baer. A note on wild quiver algebras and tilting modules , 1989 .
[7] I. Assem,et al. Algebras with cycle-finite derived categories , 1988 .
[8] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[9] C. Ringel. THE REGULAR COMPONENTS OF THE AUSLANDER-REITEN QUIVER OF A TILTED ALGEBRA , 1988 .
[10] C. Ringel. Tame Algebras and Integral Quadratic Forms , 1985 .
[11] M. Hoshino. Modules without self-extensions and Nakayama's conjecture , 1984 .
[12] I. Assem. Torsion Theories Induced by Tilting Modules , 1984, Canadian Journal of Mathematics.
[13] S. Smalø. Torsion Theories and Tilting Modules , 1984 .
[14] K. Nishida. On tilted algebras , 1983 .
[15] Peter Gabriel,et al. Covering spaces in representation-theory , 1982 .
[16] M. Hoshino. Tilting Modules and Torsion Theories , 1982 .
[17] C. Ringel,et al. Construction of tilted algebras , 1981 .
[18] I. Reiten,et al. Representation theory of artin algebras iii almost split sequences , 1975 .