Time-Domain Lifetime Measurements

Time-resolved measurements are widely used in fluorescence spectroscopy, particularly for studies of biological macromolecules. This is because time-resolved data frequently contain more information than is available from the steady-state data. For instance, consider a protein which contains two tryptophan residues, each with a distinct lifetime. Because of spectral overlap of the absorption and emission, it is not usually possible to resolve the emission from the two residues. However, the time-resolved data may reveal two decay times, which can be used to resolve the emission spectra and relative intensities of the two tryptophan residues. Then one can question how each of the tryptophan residues is affected by the interactions of the protein with its substrate or other macromolecules. Is one of the tryptophan residues close to the binding site? Is a tryptophan residue in a distal domain affected by substrate binding to another domain? Such questions can be answered if one measures the decay times associated with each tryptophan residue.

[1]  David J. S. Birch,et al.  REVIEW ARTICLE: Single-photon timing detectors for fluorescence lifetime spectroscopy , 1996 .

[2]  L. Mets,et al.  Energy transfer and trapping in the photosystem I core antenna. A temperature study. , 1992, Biophysical journal.

[3]  William R. Ware,et al.  Performance characteristics of a small side‐window photomultiplier in laser single‐photon fluorescence decay measurements , 1983 .

[4]  N. Boens,et al.  Possibilities and limitations of the time-correlated single photon counting technique: a comparative study of correction methods for the wavelength dependence of the instrument response function , 1986 .

[5]  D. Birch,et al.  A single-photon counting fluorescence decay-time spectrometer , 1977 .

[6]  F. Castelli Determination of correct reference fluorescence lifetimes by self‐consistent internal calibration , 1985 .

[7]  Hidehiro Kume,et al.  Compact ultrafast microchannel plate photomultiplier tube , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[8]  M. Straume,et al.  Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. , 1992, Methods in enzymology.

[9]  M. Ameloot,et al.  Extension of the performance of Laplace deconvolution in the analysis of fluorescence decay curves. , 1983, Biophysical journal.

[10]  Andrea L. Lacaita,et al.  20-ps timing resolution with single-photon avalanche diodes , 1989 .

[11]  D. A. Gedcke,et al.  A constant fraction of pulse height trigger for optimum time resolution , 1967 .

[12]  A. Holzwarth,et al.  Measurement and analysis of fluorescence decay curves , 1977 .

[13]  R. Bennett Instrument to Measure Fluorescence Lifetimes in the Millimicrosecond Region , 1960 .

[14]  R. Alfano,et al.  THE USE OF SHORT LIVED FLUORESCENT DYES TO CORRECT FOR ARTIFACTS IN THE MEASUREMENTS OF FLUORESCENCE LIFETIMES , 1985, Photochemistry and photobiology.

[15]  S. Kinoshita,et al.  High‐performance, time‐correlated single photon counting apparatus using a side‐on type photomultiplier , 1982 .

[16]  F. Lytle,et al.  Capillary zone electrophoresis with time-resolved fluorescence detection using a diode-pumped solid-state laser , 1993 .

[17]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[18]  F. Moreno,et al.  Application of a sine transform method to experiments of single‐photon‐decay spectroscopy: Single exponential decay signals , 1992 .

[19]  R. López-Delgado Comments on the application of synchrotron radiation to time-resolved spectrofluorometry , 1978 .

[20]  James N. Demas,et al.  Excited State Lifetime Measurements , 1983 .

[21]  G. Beck Operation of a 1P28 photomultiplier with subnanosecond response time , 1976 .

[22]  Sergio Cova,et al.  Performance comparison of a single‐photon avalanche diode with a microchannel‐plate photomultiplier in time‐correlated single‐photon counting , 1988 .

[23]  C. Harris,et al.  Single-Photon Decay Spectroscopy. II. The Pile-up Problem , 1979 .

[24]  A van Hoek,et al.  A subnanosecond resolving spectrofluorimeter for the analysis of protein fluorescence kinetics. , 1983, Journal of biochemical and biophysical methods.

[25]  J. Brochon Maximum entropy method of data analysis in time-resolved spectroscopy. , 1994, Methods in enzymology.

[26]  J. Miehé,et al.  Wavelength dependence of the time resolution of high-speed photomultipliers used in single-photon timing experiments , 1976 .

[27]  P. Barbara,et al.  Ultrafast emission spectroscopy in the ultraviolet by time‐gated upconversion , 1988 .

[28]  E Gratton,et al.  Fluorescence lifetime distributions in proteins. , 1987, Biophysical journal.

[29]  A. Balter,et al.  A method of avoiding wavelength-dependent errors in decay-time measurements , 1979 .

[30]  Jay R. Knutson,et al.  Simultaneous analysis of multiple fluorescence decay curves: A global approach , 1983 .

[31]  I. B. Berlman,et al.  VERSATILE TECHNIQUE FOR MEASURING FLUORESCENCE DECAY TIMES IN THE NANOSECOND REGION , 1963 .

[32]  L. E. Bowman,et al.  A single photon timing instrument that covers a broad temporal range in the reversed timing configuration , 1993 .

[33]  R. Verrall,et al.  Excitation pulse-shape mimic technique for improving picosecond-laser-excited time-correlated single-photon counting deconvolutions , 1983 .

[34]  Charles W. Wilkerson,et al.  Bias and precision in the estimation of exponential decay parameters from sparse data , 1993 .

[35]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. , 1993 .

[36]  Jürgen Wolfrum,et al.  Time‐resolved identification of individual mononucleotide molecules in aqueous solution with pulsed semiconductor lasers , 1998 .

[37]  E W Small,et al.  Method of moments and treatment of nonrandom error. , 1992, Methods in enzymology.

[38]  [1] Use of least-squares techniques in biochemistry☆ , 1994 .

[39]  David J. S. Birch,et al.  Coaxial nanosecond flashlamp , 1981 .

[40]  D. Birch,et al.  Near‐infrared spark source excitation for fluorescence lifetime measurements , 1991 .

[41]  Douglas R. James,et al.  A fallacy in the interpretation of fluorescence decay parameters , 1985 .

[42]  B. Leskovar,et al.  Performance Studies of High Gain Photomultiplier Having Z-Configuration of Microchannel Plates , 1981, IEEE Transactions on Nuclear Science.

[43]  A. Wiessner,et al.  Optical design considerations and performance of a spectro‐streak apparatus for time‐resolved fluorescence spectroscopy , 1993 .

[44]  R. Leblanc,et al.  Fluorescence of aggregated forms of Chl a in various media , 1994 .

[45]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[46]  D. Bebelaar Compensator for the time dispersion in a monochromator , 1986 .

[47]  Katsuyuki Kinoshita,et al.  Femtosecond streak tube , 1987 .

[48]  M L Johnson Analysis of ligand-binding data with experimental uncertainties in independent variables. , 1992, Methods in enzymology.

[49]  A. Holzwarth,et al.  Time response of small side‐on photomultiplier tubes in time‐correlated single‐photon counting measurements , 1988 .

[50]  L. Libertini,et al.  Construction and tuning of a monophoton decay fluorometer with high‐ resolution capabilities , 1984 .

[51]  A Grinvald,et al.  On the analysis of fluorescence decay kinetics by the method of least-squares. , 1974, Analytical biochemistry.

[52]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[53]  S. Cova,et al.  Improving the performance of ultrafast microchannel-plate photomultipliers in time-correlated photon counting by pulse pre-shaping , 1990 .

[54]  Joerg Enderlein,et al.  Simultaneous detection of time-resolved emission spectra using a multianode PMT and new time-correlated single-photon counting (TCSPC) electronics with a 5-MHz count rate , 1995, Photonics West.

[55]  M. Johnson Evaluation and propagation of confidence intervals in nonlinear, asymmetrical variance spaces. Analysis of ligand-binding data. , 1983, Biophysical journal.

[56]  M. Ameloot Laplace deconvolution of fluorescence decay surfaces , 1992 .

[57]  D. Hanna,et al.  Principles of Lasers , 2011 .

[58]  Richard B. Miles,et al.  Fundamentals of laser optics , 1994 .

[59]  J. Brochon,et al.  Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. , 1987, Biophysical journal.

[60]  Aleksander Siemiarczuk,et al.  Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes , 1992 .

[61]  H. Kume,et al.  Computer Analysis of the Timing Properties in Micro Channel Plate Photomultiplier Tubes , 1984, IEEE Transactions on Nuclear Science.

[62]  J. R. Wilson,et al.  Optoelectronics, an introduction , 1984 .

[63]  P. Wahl,et al.  The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method , 1974 .

[64]  R. D. Dyson,et al.  Studies on the analysis of fluorescence decay data by the method of moments. , 1973, Biophysical journal.

[65]  F. Merola,et al.  Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. , 1989, Biochemistry.

[66]  R. Dale,et al.  Reconvolution analysis in time‐resolved fluorescence experiments—an alternative approach: Reference‐to‐excitation‐to‐fluorescence reconvolution , 1993 .

[67]  G. E. Thomas,et al.  Measurement of the Time Dependence of Scintillation Intensity by a Delayed‐Coincidence Method , 1961 .

[68]  E. Carraway,et al.  Luminescence lifetime measurements. Elimination of phototube time shifts with the phase plane method , 1985 .

[69]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[70]  M. Anliker,et al.  Optimized streak-camera system: wide excitation range and extended time scale for fluorescence lifetime measurement , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[71]  S. Kinoshita,et al.  Subnanosecond fluorescence‐lifetime measuring system using single photon counting method with mode‐locked laser excitation , 1981 .

[72]  Andrea L. Lacaita,et al.  Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps , 1987 .

[73]  J. Beechem,et al.  Global resolution of heterogeneous decay by phase/modulation fluorometry: mixtures and proteins , 1983 .

[74]  G. Porter,et al.  Time resolved fluorescence in the picosecond region , 1974 .

[75]  J. Lakowicz,et al.  Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times. , 1987, Biophysical chemistry.

[76]  F. Lytle,et al.  Optimization of data-acquistion rates in time-correlated single-photon fluorimetry. , 1979, The Review of scientific instruments.

[77]  M. Barkley,et al.  Comparison of approaches to the instrumental response function in fluorescence decay measurements. , 1986, Analytical biochemistry.

[78]  Musubu Koishi,et al.  Development and characteristics of a new picosecond fluorescence lifetime system , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[79]  Michael Zuker,et al.  Delta function convolution method (DFCM) for fluorescence decay experiments , 1985 .

[80]  T. Salthammer,et al.  Time-correlated single-photon counting with alternate recording of excitation and emission , 1989 .

[81]  D. Birch,et al.  MULTIPLEXED SINGLE-PHOTON COUNTING. II. THE STATISTICAL THEORY OF TIME-CORRELATED MEASUREMENTS , 1996 .

[82]  Y. Tsuchiya,et al.  Recent Developments Of Streak Cameras , 1985, Photonics West - Lasers and Applications in Science and Engineering.

[83]  Y Wang,et al.  High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes. , 2000, Analytical chemistry.

[84]  Hans C. Gerritsen,et al.  Micro-Volume Time-Resolved Fluorescence Spectroscopy Using a Confocal Synchrotron Radiation Microscope , 1995 .

[85]  Fred E. Lytle,et al.  High repetition rate subnanosecond gated photon counting , 1983 .

[86]  Gary R. Holtom,et al.  Artifacts and diagnostics in fast fluorescence measurements , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[87]  J. Yguerabide Generation and Detection of Subnanosecond Light Pulses: Application to Luminescence Studies , 1965 .

[88]  R. Herman,et al.  Monochromators as light stretchers , 1981 .

[89]  J. R. Taylor,et al.  A new synchroscan streak-camera read-out system for use with CW mode-locked lasers , 1983 .

[90]  J. Sutherland,et al.  THE TIME‐RESOLVED PHOTON‐COUNTING FLUOROMETER AT THE NATIONAL SYNCHROTRON LIGHT.SOURCE , 1986, Photochemistry and photobiology.

[91]  I. Yamazaki,et al.  Microchannel‐plate photomultiplier applicability to the time‐correlated photon‐counting method , 1985 .

[92]  D. Birch,et al.  Time-correlated single-photon counting fluorescence decay studies at 930 nm using spark source excitation , 1988 .

[93]  N. Schwentner,et al.  Time resolved spectroscopy using synchrotron radiation , 1983 .

[94]  J. Rička Evaluation of nanosecond pulse–fluorometry measurements—no need for the excitation function , 1981 .

[95]  A. Lacaita,et al.  New double constant‐fraction trigger circuit for locking on laser pulse trains up to 100 MHz , 1990 .

[96]  M. Seibert,et al.  Statistical evaluation of dead time effects and pulse pileup in fast photon counting. Introduction of the sequential model , 1988 .

[97]  S. Lassiter,et al.  Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications. , 2000, Analytical chemistry.

[98]  Joseph M. Beechem,et al.  Multiemission wavelength picosecond time-resolved fluorescence decay data obtained on the millisecond time scale: application to protein:DNA interactions and protein-folding reactions , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[99]  Andrea L. Lacaita,et al.  Photoluminescence lifetime microscope spectrometer based on time‐correlated single‐photon counting with an avalanche diode detector , 1990 .

[100]  I. Yamazaki,et al.  Picosecond single photon timing measurements with a proximity type microchannel plate photomultiplier and global analysis with reference convolution , 1990 .

[101]  D. Bebelaar Time response of various types of photomultipliers and its wavelength dependence in time‐correlated single‐photon counting with an ultimate resolution of 47 ps FWHM , 1986 .

[102]  P. V. Gatenby,et al.  Acousto-optic signal processing , 1984 .

[103]  T. Kulinski,et al.  Fluorescence lifetime measurements of pseudoazulenes using picosecond-resolved single photon counting , 1988 .

[104]  Colin Lewis,et al.  The Measurement of Short‐Lived Fluorescence Decay Using the Single Photon Counting Method , 1973 .

[105]  H. Lami,et al.  Protein fluorescence decay: discrete components or distribution of lifetimes? Really no way out of the dilemma? , 1995, Biophysical journal.

[106]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[107]  H. Luecke,et al.  Crystal structure of the annexin XII hexamer and implications for bilayer insertion , 1995, Nature.

[108]  D. Birch,et al.  Distortion of gaussian pulses by a diffraction grating , 1982 .

[109]  F. Lytle,et al.  Cavity-dumped argon-ion laser as an excitation source in time-resolved fluorimetry , 1974 .

[110]  J. Demuynck,et al.  Application of a Microchannel Plate PhotoMultiplier in Subnanosecond Lifetime Measurements , 1978, IEEE Transactions on Nuclear Science.

[111]  F. Mérola,et al.  Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59). , 1988, Biochemistry.

[112]  George E. P. Box,et al.  FITTING EMPIRICAL DATA * , 1960 .

[113]  A. Grinvald,et al.  An improvement of nanosecond fluorimeters to overcome drift problems , 1974 .

[114]  Edward C. van der Meulen,et al.  Entropy-Based Tests of Uniformity , 1981 .

[115]  E. Small,et al.  On moment index displacement , 1977 .

[116]  S. Cova,et al.  Towards picosecond resolution with single-photon avalanche diodes , 1981 .

[117]  Michael L. Johnson,et al.  [16] Nonlinear least-squares analysis , 1985 .

[118]  Kenneth T. V. Grattan,et al.  Prony’s method for exponential lifetime estimations in fluorescence‐based thermometers , 1996 .

[119]  Alan E. Johnson,et al.  Substituent effects on intermolecular electron transfer : coumarins in electron-donating solvents , 1993 .

[120]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[121]  W. Hillen,et al.  Structural analysis of the operator binding domain of Tn10-encoded Tet repressor: a time-resolved fluorescence and anisotropy study. , 1992, Biochemistry.

[122]  David J. S. Birch,et al.  Multiplexed single-photon counting. I. A time-correlated fluorescence lifetime camera , 1996 .

[123]  R. Dowben,et al.  Subnanosecond single photon counting fluorescence spectroscopy using synchronously pumped tunable dye laser excitation. , 1978, The Review of scientific instruments.

[124]  A. Korpel Acoustooptic Signal Processing , 1976 .

[125]  F. Castellano,et al.  Photophysical properties of ruthenium polypyridyl photonic SiO2 gels , 1994 .

[126]  A. Visser,et al.  Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. , 1987, European journal of biochemistry.

[127]  Gerard Mourou,et al.  A simple jitter-free picosecond streak camera , 1981 .

[128]  Gerald S. Buller,et al.  All‐solid‐state microscope‐based system for picosecond time‐resolved photoluminescence measurements on II‐VI semiconductors , 1992 .

[129]  B. H. Candy Photomultiplier characteristics and practice relevant to photon counting , 1985 .

[130]  E. Novikov Reference reconvolution analysis by phase plane method , 1998 .

[131]  William R. Ware,et al.  Deconvolution of fluorescence and phosphorescence decay curves. Least-squares method , 1973 .

[132]  A. McKinnon,et al.  Confidence in fluorescence lifetime determinations: a ratio correction for the photomultiplier time response with wavelength , 1976 .

[133]  Branko Leskovar,et al.  Photon counting system for subnanosecond fluorescence lifetime measurements , 1976 .

[134]  David J. S. Birch,et al.  Multiplexed Time-Correlated Single Photon Counting , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[135]  L. Hoffland,et al.  Subnanosecond time-correlated photon counting with tunable lasers. , 1978, The Review of scientific instruments.

[136]  Peter Hall,et al.  Better estimates of exponential decay parameters , 1981 .

[137]  A. Lacaita,et al.  Four-hundred-picosecond single-photon timing with commercially available avalanche photodiodes , 1988 .

[138]  宅間 宏,et al.  Amnon Yariv: Quantum Electronics, John Wiley and Sons, Inc., New York, 1967, 478頁, 16×24cm, 5,980円. , 1968 .

[139]  M. Takahashi,et al.  Conformational flexibility of domain III of annexin V at membrane/water interfaces. , 1999, Biochemistry.

[140]  J M Beechem,et al.  A second generation global analysis program for the recovery of complex inhomogeneous fluorescence decay kinetics. , 1989, Chemistry and physics of lipids.

[141]  S. Canonica,et al.  Improved timing resolution using small side‐on photomultipliers in single photon counting , 1985 .

[142]  I. Yamazaki,et al.  Applicability of a microchannel plate photo-multiplier to the time-correlated photon counting technique. , 1982, Applied optics.

[143]  Ludwig Brand,et al.  [17] Time-resolved fluorescence measurements , 1979 .

[144]  A. Campillo,et al.  Picosecond streak camera fluorometry - A review , 1983, IEEE Journal of Quantum Electronics.

[145]  Joseph R Lakowicz,et al.  Phase Fluorometry Using a Continuously Modulated Laser Diode. , 1992, Analytical chemistry.

[146]  Joseph R. Lakowicz,et al.  Phase-modulation fluorometry using a frequency-doubled pulsed laser diode light source , 1990 .

[147]  George Porter,et al.  Picosecond fluorescence depolarisation measured by frequency conversion , 1981 .

[148]  J. Penn,et al.  Evaluation of single-photon-counting measurements of excited-state lifetimes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[149]  A. Hoek,et al.  THE FLUORESCENCE DECAY OF REDUCED NICOTINAMIDES IN AQUEOUS SOLUTION AFTER EXCITATION WITH A UV‐MODE LOCKED Ar ION LASER , 1981 .

[150]  A. Arbel,et al.  Snap-off constant fraction timing discriminators , 1974 .

[151]  L. Libertini,et al.  On the choice of laser dyes for use in exciting tyrosine fluorescence decays. , 1987, Analytical biochemistry.

[152]  E Gratton,et al.  Phase fluorometric method for determination of standard lifetimes. , 1988, Analytical chemistry.

[153]  J. Miehé,et al.  Impulse response of curved microchannel plate photomultipliers , 1977 .

[154]  A. Freiberg,et al.  Elimination of excess pulse broadening at high spectral resolution of picosecond duration light emission , 1981 .

[155]  J M Beechem,et al.  Global analysis of biochemical and biophysical data. , 1992, Methods in enzymology.

[156]  W. Ware,et al.  Creation and detection of the excited state , 1971 .

[157]  A. Visser,et al.  KINETICS OF STACKING INTERACTIONS IN FLAVIN ADENINE DINUCLEOTIDE FROM TIME‐RESOLVED FLAVIN FLUORESCENCE , 1984, Photochemistry and photobiology.

[158]  William R. Ware,et al.  Deconvolution of fluorescence decay curves. A critical comparison of techniques , 1979 .

[159]  L. Brand,et al.  Analysis of fluorescence decay curves by means of the Laplace transformation. , 1975, Biophysical journal.

[160]  M. Winnik,et al.  Analysis of the scattered light component in distorted fluorescence decay profiles using a modified delta function convolution method , 1987 .

[161]  Andrea L. Lacaita,et al.  Constant‐fraction circuits for picosecond photon timing with microchannel plate photomultipliers , 1993 .

[162]  D. A. Gedcke,et al.  DESIGN OF THE CONSTANT FRACTION OF PULSE HEIGHT TRIGGER FOR OPTIMUM TIME RESOLUTION. , 1968 .

[163]  A. Visser,et al.  The measurement of subnanosecond fluorescence decay of flavins using time-correlated photon counting and a mode-locked Ar ion laser. , 1979, Journal of biochemical and biophysical methods.

[164]  Jonathon R. Howorth,et al.  Developments in microchannel plate photomultipliers , 1995, Photonics West.

[165]  R. Cubeddu,et al.  A semiconductor detector for measuring ultraweak fluorescence decays with 70 ps FWHM resolution , 1983, IEEE Journal of Quantum Electronics.

[166]  A. Penzkofer,et al.  Fluorescence decay studies applying a CW femtosecond dye laser pumped ungated inverse time-correlated single photon counting system , 1992 .

[167]  J. Ricardo Alcala,et al.  The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions , 1994 .

[168]  A Zelić,et al.  Analytical approach to the recovery of short fluorescence lifetimes from fluorescence decay curves. , 1995, Biophysical journal.

[169]  R. L. Bybee,et al.  Preliminary results with microchannel array plates employing curved microchannels to inhibit ion feedback. [for photon counters] , 1977 .

[170]  B. Turko,et al.  Single photon timing system for picosecond fluorescence lifetime measurementsa) , 1983 .

[171]  A. Grinvald The use of standards in the analysis of fluorescence decay data. , 1976, Analytical biochemistry.

[172]  Ludwig Brand,et al.  Global analysis of fluorescence decay surfaces: excited-state reactions , 1985 .

[173]  B. Leskovar,et al.  Studies of Prototype High-Gain Microchannel Plate Photomultiliers , 1979, IEEE Transactions on Nuclear Science.

[174]  B. Selinger,et al.  Single photon decay spectroscopy. , 1973 .

[175]  M L Johnson,et al.  Parameter estimation by least-squares methods. , 1992, Methods in enzymology.

[176]  Robert R. Alfano,et al.  Picosecond characteristics of a spectrograph measured by a streak camera/video readout system , 1980 .

[177]  J. Malmberg Millimicrosecond Duration Light Source , 1957 .

[178]  A. Katz,et al.  Time response of ultrafast streak camera system using femtosecond laser pulses , 1985 .

[179]  Stephen R. Meech,et al.  Standards for nanosecond fluorescence decay time measurements , 1983 .

[180]  Jürgen Wolfrum,et al.  Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting (TCSPC) , 1999 .

[181]  B. Barisas,et al.  Grid‐gated photomultiplier photometer with subnanosecond time response , 1980 .

[182]  Alan E. Johnson,et al.  Femtosecond intermolecular electron transfer in condensed systems , 1994 .

[183]  Robert R. Birge,et al.  Applications of fluorescence in the biomedical sciences , 1986 .