Flexible In–Ga–Zn–O Thin-Film Transistors With Sub-300-nm Channel Lengths Defined by Two-Photon Direct Laser Writing

In this paper, the low-temperature (≤150 °C) fabrication and characterization of flexible indium–gallium–zinc–oxide (IGZO) top-gate thin-film transistors (TFTs) with channel lengths down to 280 nm is presented. Such extremely short channel lengths in flexible IGZO TFTs were realized with a novel manufacturing process combining two-photon direct laser writing (DLW) photolithography with Ti/Au/Ti source/drain e-beam evaporation and liftoff. The resulting flexible IGZO TFTs exhibit a saturation field-effect mobility of 1.1 cm<inline-formula> <tex-math notation="LaTeX">$^{\textsf {2}}\cdot \textsf {V}^{-\textsf {1}}\cdot \text {s}^{-\textsf {1}}$ </tex-math></inline-formula> and a threshold voltage of 3 V. Thanks to the short channel lengths (280 nm) and the small gate to source/drain overlap (<inline-formula> <tex-math notation="LaTeX">$5.2~\mu \text{m}$ </tex-math></inline-formula>), the TFTs yield a transit frequency of 80 MHz (at 8.5-V gate–source voltage) extracted from the measured S-parameters. Furthermore, the devices are fully functional when wrapped around a cylindrical rod with 6-mm radius, corresponding to 0.4% tensile strain in the TFT channel. These results demonstrate a new methodology to realize entirely flexible nanostructures and prove its suitability for the fabrication of short-channel transistors on polymer substrates for future wearable communication electronics.

[1]  Arokia Nathan,et al.  Transparent Semiconducting Oxide Technology for Touch Free Interactive Flexible Displays , 2015, Proceedings of the IEEE.

[2]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[3]  L. V. Pieterson,et al.  Smart textiles: Challenges and opportunities , 2012 .

[4]  G. Tröster,et al.  Metal oxide semiconductor thin-film transistors for flexible electronics , 2016 .

[5]  J. Fischer,et al.  Elastic Fully Three‐dimensional Microstructure Scaffolds for Cell Force Measurements , 2010, Advanced materials.

[6]  Gerhard Tröster,et al.  Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics. , 2017, ACS applied materials & interfaces.

[7]  R Schmogrow,et al.  Photonic wire bonding: a novel concept for chip-scale interconnects. , 2012, Optics express.

[8]  Woon-Hong Yeo,et al.  Immunologic and Tissue Biocompatibility of Flexible/Stretchable Electronics and Optoelectronics , 2014, Advanced healthcare materials.

[9]  Boris N. Chichkov,et al.  Two-Photon Polymerization: A New Approach to Micromachining Femtosecond lasers enable microfabrication with resolution beyond the diffraction limit. , 2006 .

[10]  Luisa Petti,et al.  Flexible Self-Aligned Amorphous InGaZnO Thin-Film Transistors With Submicrometer Channel Length and a Transit Frequency of 135 MHz , 2013, IEEE Transactions on Electron Devices.

[11]  G. Tröster,et al.  Influence of Mechanical Bending on Flexible , 2014 .

[12]  Luisa Petti,et al.  Flexible Quasi-Vertical In-Ga-Zn-O Thin-Film Transistor With 300-nm Channel Length , 2015, IEEE Electron Device Letters.

[13]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[14]  Martin Wegener,et al.  Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm , 2010 .

[15]  Gerhard Tröster,et al.  Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation , 2014 .

[16]  Matthias Worgull,et al.  3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. , 2012, Small.

[17]  M. Wegener,et al.  Tapered gold-helix metamaterials as improved circular polarizers , 2012 .

[18]  G. Troster,et al.  Mechanically flexible vertically integrated a-IGZO thin-film transistors with 500 nm channel length fabricated on free standing plastic foil , 2013, 2013 IEEE International Electron Devices Meeting.

[19]  Siegfried Bauer,et al.  Flexible electronics: Sophisticated skin. , 2013, Nature materials.

[20]  S. Hengsbach,et al.  Direct laser writing of auxetic structures: present capabilities and challenges , 2014 .

[21]  Salvador Pané,et al.  Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. , 2014, Small.

[22]  Torsten Scherer,et al.  Fabrication of Conductive 3D Gold‐Containing Microstructures via Direct Laser Writing , 2016, Advanced materials.

[23]  N. Camilleri,et al.  Extracting small-signal model parameters of silicon MOSFET transistors , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).