Gas Condensate Reservoir Behaviour: Productivity and Recovery Reduction Due to Condensation

The depletion of gas condensate reservoirs to pressures below the dew point has been studied by reservoir engineers for many years. Pressure decline below the dew point pressure causes condensation to occur which creates a hydrocarbon liquid saturation in the reservoir. This process reduces liquid recovery and may reduce gas productivity and gas recovery. Exxon experience, particularly in low-productivity, high-yield gas condensate fields, suggests that liquid condensate formation can result in severe loss of well deliverability and therefore of gas recovery. This study was undertaken to evaluate the historical frequency and severity of productivity impairment due to near-wellbore condensate buildup and to identify reservoir parameters associated with severe productivity and recovery reduction. This study of gas condensate reservoirs included a survey of Exxon and published industry experience, a review of published laboratory data, and simulations with single well flow models. Data from 17 fields are included in this paper to demonstrate that severe loss of gas recovery occurs primarily in low productivity reservoirs. Production data from two wells were history matched with simple radial models to evaluate the potential range of the critical condensate saturation (the minimum mobile condensate saturation) and its impact on gas recovery. Published laboratory data for gas-condensate relative permeability were used as a starting point for these simulations. The primary conclusion from this study is that productivity impairment results in reductions in gas recovery for wells with a permeability-thickness below 1000 md-ft. The history matched simulations support a range of critical condensate saturations from 10% to 30%, in good agreement with published laboratory values.