Caspian transgressive-regressive cycles across the Lower Volga region during the Quaternary reconstructed from the borehole at Ulan-Khol (Kalmykia, Russia)

[1]  B. M. Kuandykov,et al.  Geological Aspects of Energy and Environmental-Safety Problems in the Caspian Region , 2022, Russian Geology and Geophysics.

[2]  O. Oms,et al.  Five-fold expansion of the Caspian Sea in the late Pliocene: New and revised magnetostratigraphic and 40Ar/39Ar age constraints on the Akchagylian Stage , 2021 .

[3]  V. Titov,et al.  Pleistocene palaeoenvironments in the Lower Volga region (Russia): Insights from a comprehensive biostratigraphical study of the Seroglazovka locality , 2021, Quaternary International.

[4]  T. Yanina,et al.  Paleogeography of the Atelian regression in the Caspian Sea (based on drilling data) , 2020, Quaternary International.

[5]  L. Lourens,et al.  The Neogene Period , 2012 .

[6]  N. Bolikhovskaya,et al.  The Early Khvalynian stage in the Caspian Sea evolution: Pollen records, palynofloras and reconstructions of paleoenvironments , 2020 .

[7]  A. Svitoch,et al.  Incompleteness of the geological record in Middle-Upper Pleistocene key sections of the Northern Caspian Lowland , 2020 .

[8]  K. Richards,et al.  The Akchagylian stage (late Pliocene-early Pleistocene) in the North Caspian region: Pollen evidence for vegetation and climate change in the Urals-Emba region , 2020 .

[9]  A. Murray,et al.  Biostratigraphical investigations as a tool for palaeoenvironmental reconstruction of the Neopleistocene (Middle-Upper Pleistocene) at Kosika, Lower Volga, Russia , 2020 .

[10]  S. Leroy,et al.  Vegetation succession and climate change across the Plio-Pleistocene transition in eastern Azerbaijan, central Eurasia (2.77–2.45 Ma) , 2020 .

[11]  W. Krijgsman,et al.  Magneto-biostratigraphic age constraints on the palaeoenvironmental evolution of the South Caspian basin during the Early-Middle Pleistocene (Kura basin, Azerbaijan) , 2019, Quaternary Science Reviews.

[12]  K. Richards,et al.  Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations , 2019, Global and Planetary Change.

[13]  J. Singarayer,et al.  Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution , 2019, Earth-Science Reviews.

[14]  P. Gibbard,et al.  Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500 , 2008, Quaternary International.

[15]  V. Titov,et al.  Singil Deposits in the Quaternary Scheme of the Lower Volga Region: New Data , 2018, Stratigraphy and Geological Correlation.

[16]  O. Sztanó,et al.  Paleomagnetism in Lake Pannon: Problems, Pitfalls, and Progress in Using Iron Sulfides for Magnetostratigraphy , 2018, Geochemistry, Geophysics, Geosystems.

[17]  G. Danukalova,et al.  State of stratigraphic knowledge of Quaternary deposits in European Russia: Unresolved issues and challenges for further research , 2017, Quaternary International.

[18]  Mathijs R. Koymans,et al.  Paleomagnetism.org: An online multi-platform open source environment for paleomagnetic data analysis , 2016, Comput. Geosci..

[19]  K. Richards,et al.  Pollen evidence for Late Pliocene - Early Pleistocene vegetation and climate change in the North Caucasus, North-Western Caspian Region , 2016 .

[20]  W. Krijgsman,et al.  A Greigite-Based Magnetostratigraphic Time Frame for the Late Miocene to Recent DSDP Leg 42B Cores from the Black Sea , 2016, Front. Earth Sci..

[21]  S. Leroy,et al.  Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River , 2013 .

[22]  Cor G. Langereis,et al.  Putative greigite magnetofossils from the Pliocene epoch , 2008 .

[23]  L. A. Nevesskaja History of the genus Didacna (Bivalvia: Cardiidae) , 2007 .

[24]  A. Roberts,et al.  Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy , 2005 .

[25]  I. Overeem,et al.  Two Deltas, Two Basins, One River, One Sea: The Modern Volga Delta an as Analogue of the Neogene Productive Series, South Caspian Basin , 2005 .

[26]  Y. Bezrodnykh,et al.  BIOSTRATIGRAPHY, STRUCTURE OF THE UPPER QUATERNARY DEPOSITS AND SOME PALEOGEOGRAPHIC FEATURES OF THE NORTH CASPIAN REGION , 2004 .

[27]  M. Schoonen,et al.  Magnetic properties of hydrothermally synthesized greigite (Fe3S4)- II. High- and low-temperature characteristics , 2000 .

[28]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[29]  C. Turner VOLCANIC MAARS, LONG QUATERNARY SEQUENCES AND THE WORK OF THE INQUA SUBCOMMISSION ON EUROPEAN QUATERNARY STRATIGRAPHY , 1998 .

[30]  M. Dekkers,et al.  Continuous drift correction and separate identification of ferrimagnetic and paramagnetic contributions in thermomagnetic runs , 1993 .

[31]  M. Dekkers Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM as function of grain size , 1989 .

[32]  W. Wright The “Quaternary” Period , 1907, Nature.