Efficient clustering of wireless sensor networks based on memetic algorithm

In this paper, we propose an efficient centralized clustering algorithm for wireless sensor networks. The algorithm which organizes the sensors into clusters uses memetic algorithm to determine cluster heads and sizes. Memetic algorithms which are similar to genetic algorithms are population-based heuristic search approaches for optimization problems. To assess the efficiency of the proposed clustering technique, we compare the network lifetime with those of other clustering algorithms. The results show that the proposed algorithm considerably increases the network lifetime.

[1]  Daniel Minoli,et al.  Wireless Sensor Networks: Technology, Protocols, and Applications , 2007 .

[2]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[3]  David E. Culler,et al.  Taming the underlying challenges of reliable multihop routing in sensor networks , 2003, SenSys '03.

[4]  Abdul Wasey Matin,et al.  Genetic Algorithm for Hierarchical Wireless Sensor Networks , 2007, J. Networks.

[5]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[6]  Makoto Takizawa,et al.  A Survey on Clustering Algorithms for Wireless Sensor Networks , 2010, 2010 13th International Conference on Network-Based Information Systems.

[7]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[8]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[9]  Anantha P. Chandrakasan,et al.  An application-specific protocol architecture for wireless microsensor networks , 2002, IEEE Trans. Wirel. Commun..

[10]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[11]  M. Moh,et al.  Hybrid indirect transmissions (HIT) for data gathering in wireless micro sensor networks with biomedical applications , 2003, 2002 14th International Conference on Ion Implantation Technology Proceedings (IEEE Cat. No.02EX505).

[12]  Cauligi S. Raghavendra,et al.  PEGASIS: Power-efficient gathering in sensor information systems , 2002, Proceedings, IEEE Aerospace Conference.

[13]  Wendi Heinzelman,et al.  Proceedings of the 33rd Hawaii International Conference on System Sciences- 2000 Energy-Efficient Communication Protocol for Wireless Microsensor Networks , 2022 .

[14]  Ramesh Govindan,et al.  Wireless sensor networks , 2003, Comput. Networks.

[15]  Erwin Pesch,et al.  Genetic Local Search in Combinatorial Optimization , 1994, Discret. Appl. Math..

[16]  Emile H. L. Aarts,et al.  Genetic Local Search Algorithms for the Travelling Salesman Problem , 1990, PPSN.

[17]  Ossama Younis,et al.  HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks , 2004, IEEE Transactions on Mobile Computing.