Using social media to characterize urban mobility patterns: State-of-the-art survey and case-study

Abstract The knowledge of the urban mobility is a crucial aspect for city planners and administrators. The huge amount of geo-spatial data, generated by the combination of social media systems and the wide use of smart devices, is creating new challenges and opportunities to satisfy this thirst of knowledge. In this work, we explore how social media data can be used to infer knowledge about urban dynamics and mobility patterns in a urban area. Specifically, in order to highlight the main advantages, limitations, and open issues, we focus on mobility patterns by presenting a survey of the state of the art and a case-study based on the city of Barcelona.

[1]  Derek Ruths,et al.  Geolocation Prediction in Twitter Using Social Networks: A Critical Analysis and Review of Current Practice , 2015, ICWSM.

[2]  Zhi Liu,et al.  SPOT: Locating Social Media Users Based on Social Network Context , 2014, Proc. VLDB Endow..

[3]  R. Kram,et al.  Effects of obesity and sex on the energetic cost and preferred speed of walking. , 2006, Journal of applied physiology.

[4]  David W. S. Wong,et al.  Modeling and Visualizing Regular Human Mobility Patterns with Uncertainty: An Example Using Twitter Data , 2015 .

[5]  Piotr Jankowski,et al.  Extracting Personal Behavioral Patterns from Geo-Referenced Tweets , 2013 .

[6]  Jussara M. Almeida,et al.  A comparison of Foursquare and Instagram to the study of city dynamics and urban social behavior , 2013, UrbComp '13.

[7]  Ke Zhang,et al.  Characterizing users’ check-in activities using their scores in a location-based social network , 2014, Multimedia Systems.

[8]  Susanne Heuser,et al.  Location Based Social Networks – Definition, Current State of the Art and Research Agenda , 2013, Trans. GIS.

[9]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[10]  Carlo Ratti,et al.  Geo-located Twitter as proxy for global mobility patterns , 2013, Cartography and geographic information science.

[11]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[12]  Dino Pedreschi,et al.  Returners and explorers dichotomy in human mobility , 2015, Nature Communications.

[13]  Daniele Quercia,et al.  Urban Informatics and the Web , 2015, WWW.

[14]  Carlo Ratti,et al.  Understanding individual mobility patterns from urban sensing data: A mobile phone trace example , 2013 .

[15]  Alexander Zipf,et al.  An Advanced Systematic Literature Review on Spatiotemporal Analyses of Twitter Data , 2015, Trans. GIS.

[16]  Kazutoshi Sumiya,et al.  Exploring urban characteristics using movement history of mass mobile microbloggers , 2010, HotMobile '10.

[17]  Matthew Zook,et al.  Social Media and the City: Rethinking Urban Socio-Spatial Inequality Using User-Generated Geographic Information , 2015 .

[18]  Ravi Jain,et al.  Evaluating location predictors with extensive Wi-Fi mobility data , 2003, IEEE INFOCOM 2004.

[19]  Jussara M. Almeida,et al.  Visualizing the Invisible Image of Cities , 2012, 2012 IEEE International Conference on Green Computing and Communications.

[20]  Jiajun Liu,et al.  Understanding Human Mobility from Twitter , 2014, PloS one.

[21]  Sergey V. Ivanov,et al.  Evaluation of Urban Mobility Using Surveillance Cameras , 2015 .

[22]  Fosca Giannotti,et al.  Use of Mobile Phone Data to Estimate Visitors Mobility Flows , 2014, SEFM Workshops.

[23]  Trevor Cohn,et al.  Mining user behaviours: a study of check-in patterns in location based social networks , 2013, WebSci.

[24]  Lars Backstrom,et al.  Find me if you can: improving geographical prediction with social and spatial proximity , 2010, WWW '10.

[25]  Franco Zambonelli,et al.  Extracting urban patterns from location-based social networks , 2011, LBSN '11.

[26]  Norman M. Sadeh,et al.  The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City , 2012, ICWSM.

[27]  Jussara M. Almeida,et al.  Revealing the City That We Cannot See , 2014, TOIT.

[28]  Christopher M. Danforth,et al.  Happiness and the Patterns of Life: A Study of Geolocated Tweets , 2013, Scientific Reports.

[29]  Gao Cong,et al.  Who, Where, When, and What , 2015, ACM Trans. Inf. Syst..

[30]  James B. D. Joshi,et al.  Exploring trajectory-driven local geographic topics in foursquare , 2012, UbiComp.

[31]  Víctor Soto,et al.  Characterizing Urban Landscapes Using Geolocated Tweets , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[32]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[33]  Kyumin Lee,et al.  Exploring Millions of Footprints in Location Sharing Services , 2011, ICWSM.

[34]  Raz Schwartz,et al.  The spatial self: Location-based identity performance on social media , 2015, New Media Soc..

[35]  Daniel Arribas-Bel,et al.  Accidental, open and everywhere: Emerging data sources for the understanding of cities , 2014 .

[36]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[37]  Cecilia Mascolo,et al.  An Empirical Study of Geographic User Activity Patterns in Foursquare , 2011, ICWSM.

[38]  Hadley Wickham,et al.  ggmap: Spatial Visualization with ggplot2 , 2013, R J..

[39]  Kazutoshi Sumiya,et al.  Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection , 2010, LBSN '10.

[40]  Jeffrey Nichols,et al.  Home Location Identification of Twitter Users , 2014, TIST.

[41]  Yong Gao,et al.  Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data , 2013, PloS one.

[42]  Shaowen Wang,et al.  A scalable framework for spatiotemporal analysis of location-based social media data , 2014, Comput. Environ. Urban Syst..

[43]  Yong Gao,et al.  Uncovering patterns of inter-urban trips and spatial interactions from check-in data , 2013, ArXiv.

[44]  Satish V. Ukkusuri,et al.  Understanding urban human activity and mobility patterns using large-scale location-based data from online social media , 2013, UrbComp '13.

[45]  Satish V. Ukkusuri,et al.  Urban activity pattern classification using topic models from online geo-location data , 2014 .

[46]  Nicu Sebe,et al.  The Death and Life of Great Italian Cities: A Mobile Phone Data Perspective , 2016, WWW.

[47]  Jussara M. Almeida,et al.  Large-scale study of city dynamics and urban social behavior using participatory sensing , 2014, IEEE Wireless Communications.

[48]  Huan Liu,et al.  Data Analysis on Location-Based Social Networks , 2014 .

[49]  Thomas Ertl,et al.  Thematic Patterns in Georeferenced Tweets through Space-Time Visual Analytics , 2013, Computing in Science & Engineering.

[50]  Timothy Baldwin,et al.  Text-Based Twitter User Geolocation Prediction , 2014, J. Artif. Intell. Res..

[51]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[52]  Chengqi Zhang,et al.  Data preparation for data mining , 2003, Appl. Artif. Intell..

[53]  Marco Luca Sbodio,et al.  AllAboard: A System for Exploring Urban Mobility and Optimizing Public Transport Using Cellphone Data , 2013, ECML/PKDD.

[54]  Licia Capra,et al.  Urban Computing: Concepts, Methodologies, and Applications , 2014, TIST.