Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic

Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. We investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans ranging from 100,000 years ago to the present and reconstructed 459 bacterial metagenome-assembled genomes. We identified a biosynthetic gene cluster shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites that we name “paleofurans.” This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration. Description Editor’s summary With advances in the technologies used to extract and analyze ancient DNA, we are learning more about the microorganisms that lived around and within our distant human ancestors and hominin cousins. However, little is yet known about the kinds of molecules these organisms might produce or their roles in health and disease. Klapper et al. extracted metagenome-assembled genomes of bacteria in dental calculus from ancient human and Neandertal remains. Natural product biosynthetic gene clusters in these samples were distinctive, and heterologous expression of these clusters yielded 5-alkylfuran-3-carboxylic acid products that the authors refer to as paleofurans. Such methods for resurrecting ancient microbial natural products may provide insight into the nutrition and health of early hominins—and potentially bioactive compounds lost to time. —Michael A. Funk Ancient metagenomes allow for resurrection of Pleistocene bacterial metabolites.

[1]  U. Hellmich,et al.  Functional modulation of chemical mediators in microbial communities. , 2022, Trends in biochemical sciences.

[2]  Tom O. Delmont,et al.  Biosynthetic potential of the global ocean microbiome , 2022, Nature.

[3]  J. Krause,et al.  The source of the Black Death in fourteenth-century central Eurasia , 2022, Nature.

[4]  Stephanie L. Schnorr,et al.  Ethical microbiome research with Indigenous communities , 2022, Nature Microbiology.

[5]  D. Reich,et al.  Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  K. Reinert,et al.  Critical Assessment of Metagenome Interpretation: the second round of challenges , 2021, Nature Methods.

[7]  C. Deming,et al.  Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions , 2021, Nature Microbiology.

[8]  T. Williams,et al.  Remarkably coherent population structure for a dominant Antarctic Chlorobium species , 2021, Microbiome.

[9]  Thomas J. Booth,et al.  Ethics of DNA Research on Human Remains: Five Globally Applicable Guidelines , 2021, Nature.

[10]  P. Manghi,et al.  Metagenomic analysis of ancient dental calculus reveals unexplored diversity of oral archaeal Methanobrevibacter , 2021, Microbiome.

[11]  S. Nahnsen,et al.  nf-core/mag: a best-practice pipeline for metagenome hybrid assembly and binning , 2021, bioRxiv.

[12]  W. Powderly,et al.  The post-antibiotic era is here , 2021, Science.

[13]  E. Swanner,et al.  “Candidatus Chlorobium masyuteum,” a Novel Photoferrotrophic Green Sulfur Bacterium Enriched From a Ferruginous Meromictic Lake , 2021, Frontiers in Microbiology.

[14]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[15]  Luis Pedro Coelho,et al.  GUNC: detection of chimerism and contamination in prokaryotic genomes , 2021, Genome Biology.

[16]  P. Bork,et al.  eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale , 2021, bioRxiv.

[17]  Jacob M. Luber,et al.  Reconstruction of ancient microbial genomes from the human gut , 2021, Nature.

[18]  Alexander M. Kloosterman,et al.  antiSMASH 6.0: improving cluster detection and comparison capabilities , 2021, Nucleic Acids Res..

[19]  Cecil M. Lewis,et al.  The evolution and changing ecology of the African hominid oral microbiome , 2021, Proceedings of the National Academy of Sciences.

[20]  J. Lameira,et al.  Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products , 2021, Frontiers in Chemistry.

[21]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[22]  Sven Rahmann,et al.  Sustainable data analysis with Snakemake , 2021, F1000Research.

[23]  C. Warinner,et al.  PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly , 2021, bioRxiv.

[24]  C. Warinner,et al.  Ancient DNA analysis , 2021, Nature Reviews Methods Primers.

[25]  R. Bauer,et al.  Natural products in drug discovery: advances and opportunities , 2021, Nature Reviews Drug Discovery.

[26]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[27]  Eric P. Nawrocki,et al.  Rfam 14: expanded coverage of metagenomic, viral and microRNA families , 2020, Nucleic Acids Res..

[28]  Silvio C. E. Tosatto,et al.  The InterPro protein families and domains database: 20 years on , 2020, Nucleic Acids Res..

[29]  Kai Blin,et al.  The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes , 2020, Nucleic Acids Res..

[30]  Silvio C. E. Tosatto,et al.  Pfam: The protein families database in 2021 , 2020, Nucleic Acids Res..

[31]  M. Mirdita,et al.  Fast and sensitive taxonomic assignment to metagenomic contigs , 2020, bioRxiv.

[32]  Cameron L.M. Gilchrist,et al.  clinker & clustermap.js: Automatic generation of gene cluster comparison figures , 2020, bioRxiv.

[33]  Kay Nieselt,et al.  DamageProfiler: Fast damage pattern calculation for ancient DNA , 2020, bioRxiv.

[34]  V. Gibbon African ancient DNA research requires robust ethics and permission protocols , 2020, Nature Reviews Genetics.

[35]  Antonio Fernandez-Guerra,et al.  Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir , 2020, Scientific Data.

[36]  S. Schiff,et al.  Anoxygenic photosynthesis and iron–sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes , 2020, The ISME Journal.

[37]  Deborah A. Bolnick,et al.  Fostering Responsible Research on Ancient DNA. , 2020, American journal of human genetics.

[38]  Robert D. Finn,et al.  A unified catalog of 204,938 reference genomes from the human gut microbiome , 2020, Nature Biotechnology.

[39]  M. Meyer,et al.  Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA , 2020, Nature Protocols.

[40]  Alexander Peltzer,et al.  Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager , 2020, bioRxiv.

[41]  K. Guschanski,et al.  Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome , 2020, Molecular biology and evolution.

[42]  Edoardo Pasolli,et al.  Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0 , 2020, Nature Communications.

[43]  Donovan H. Parks,et al.  A complete domain-to-species taxonomy for Bacteria and Archaea , 2020, Nature Biotechnology.

[44]  Deborah A. Bolnick,et al.  Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data , 2020, Nature Reviews Genetics.

[45]  David J Newman,et al.  Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. , 2020, Journal of natural products.

[46]  I. Vilotijević,et al.  Synthesis of Allylboranes via Cu(I)-Catalyzed B-H Insertion of Vinyldiazoacetates into Phosphine-Borane Adducts. , 2020, Organic letters.

[47]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[48]  K. Menzel,et al.  Biosynthesis of Pseudomonas‐Derived Butenolides , 2019, Angewandte Chemie.

[49]  P. Jeffrey,et al.  A metagenomic strategy for harnessing the chemical repertoire of the human microbiome , 2019, Science.

[50]  M. Marahiel,et al.  Genome Mining and Heterologous Expression Reveal Two Distinct Families of Lasso Peptides Highly Conserved in Endofungal Bacteria. , 2019, ACS chemical biology.

[51]  N. Tamura,et al.  Light-driven anaerobic microbial oxidation of manganese , 2019, Nature.

[52]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[53]  J. Sonnenburg,et al.  Vulnerability of the industrialized microbiota , 2019, Science.

[54]  J. Banfield,et al.  Accurate and complete genomes from metagenomes , 2019, bioRxiv.

[55]  Marnix H. Medema,et al.  A computational framework to explore large-scale biosynthetic diversity , 2019, Nature Chemical Biology.

[56]  A. Visel,et al.  CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria , 2019, Nature Microbiology.

[57]  James A. Fellows Yates,et al.  Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage , 2019, Microbiome.

[58]  Justin V Remais,et al.  Climate change microbiology — problems and perspectives , 2019, Nature Reviews Microbiology.

[59]  M. Roksandic,et al.  The first Neanderthal specimen from Serbia: Maxillary first molar from the Late Pleistocene of Pešturina Cave. , 2019, Journal of human evolution.

[60]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[61]  J. Krause,et al.  Ancient pathogen genomics as an emerging tool for infectious disease research , 2019, Nature Reviews Genetics.

[62]  D. Raoult,et al.  Antibiotic discovery: history, methods and perspectives. , 2019, International journal of antimicrobial agents.

[63]  Feng Li,et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies , 2019, PeerJ.

[64]  Edoardo Pasolli,et al.  Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle , 2019, Cell.

[65]  Davide Heller,et al.  eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses , 2018, Nucleic Acids Res..

[66]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2018, Nature Communications.

[67]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[68]  Mingming Ma,et al.  Intrinsically Safe and Shelf-Stable Diazo-Transfer Reagent for Fast Synthesis of Diazo Compounds. , 2018, The Journal of organic chemistry.

[69]  Matthew Z. Anderson,et al.  A framework for enhancing ethical genomic research with Indigenous communities , 2018, Nature Communications.

[70]  Robin R. Rohwer,et al.  Freshwater carbon and nutrient cycles revealed through reconstructed population genomes , 2018, PeerJ.

[71]  V. W. McClain Patents on Life: A Brief View of Human Milk Component Patenting , 2018 .

[72]  Kay Prüfer,et al.  snpAD: an ancient DNA genotype caller , 2018, bioRxiv.

[73]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[74]  Fabian Sievers,et al.  Clustal Omega for making accurate alignments of many protein sequences , 2018, Protein science : a publication of the Protein Society.

[75]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[76]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[77]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[78]  J. Banfield,et al.  dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.

[79]  Cecil M. Lewis,et al.  The dental calculus metabolome in modern and historic samples , 2017, Metabolomics.

[80]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[81]  Allison E. Mann,et al.  A Robust Framework for Microbial Archaeology , 2017, Annual review of genomics and human genetics.

[82]  Paolo Di Tommaso,et al.  Nextflow enables reproducible computational workflows , 2017, Nature Biotechnology.

[83]  Daniel H. Huson,et al.  Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus , 2017, Nature.

[84]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[85]  M. Willmann,et al.  Human commensals producing a novel antibiotic impair pathogen colonization , 2016, Nature.

[86]  D. Reich,et al.  The genetic history of Ice Age Europe , 2016, Nature.

[87]  S. Vasanthkumar,et al.  Cu(OTf)2-catalyzed synthesis of highly substituted 1-methoxy imidazoles via (3 + 2) cycloaddition between imino carbenoids and nitriles , 2016 .

[88]  Alexey A. Gurevich,et al.  MetaQUAST: evaluation of metagenome assemblies , 2016, Bioinform..

[89]  Blake A. Simmons,et al.  MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets , 2016, Bioinform..

[90]  L. Orlando,et al.  AdapterRemoval v2: rapid adapter trimming, identification, and read merging , 2016, BMC Research Notes.

[91]  W. Wade,et al.  In Vitro Cultivation of ‘Unculturable’ Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores , 2016, PloS one.

[92]  Dongwan D. Kang,et al.  Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations , 2016, The ISME Journal.

[93]  Deanna M. Church,et al.  Assembly: a resource for assembled genomes at NCBI , 2015, Nucleic Acids Res..

[94]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[95]  Ying Chen,et al.  High speed BLASTN: an accelerated MegaBLAST search tool , 2015, Nucleic acids research.

[96]  L. Straus,et al.  The Magdalenian human burial of El Mirón Cave (Ramales de la Victoria, Cantabria, Spain): introduction, background, discovery and context , 2015 .

[97]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[98]  T. Inglesby,et al.  Antimicrobial resistance is a global health emergency. , 2015, Health security.

[99]  Andrew J. Page,et al.  Roary: rapid large-scale prokaryote pan genome analysis , 2015, bioRxiv.

[100]  Swapan Mallick,et al.  Partial uracil–DNA–glycosylase treatment for screening of ancient DNA , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[101]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[102]  Peter B. McGarvey,et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches , 2014, Bioinform..

[103]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[104]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[105]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[106]  S. Reardon WHO warns against 'post-antibiotic' era , 2014, Nature.

[107]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[108]  Jesper V Olsen,et al.  Pathogens and host immunity in the ancient human oral cavity , 2014, Nature Genetics.

[109]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[110]  Arnold L. Demain,et al.  Importance of microbial natural products and the need to revitalize their discovery , 2014, Journal of Industrial Microbiology & Biotechnology.

[111]  Cristina E. Valdiosera,et al.  Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments , 2013, Proceedings of the National Academy of Sciences.

[112]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[113]  J. Strassmann,et al.  A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene , 2013, Proceedings of the National Academy of Sciences.

[114]  Christina Tobin Kåhrström Entering a post-antibiotic era? , 2013, Nature Reviews Microbiology.

[115]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[116]  P. Diaz,et al.  The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation , 2013, The ISME Journal.

[117]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[118]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[119]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[120]  Matthias Meyer,et al.  A draft genome of Yersinia pestis from victims of the Black Death , 2011, Nature.

[121]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[122]  Rustam I. Aminov,et al.  A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future , 2010, Front. Microbio..

[123]  Wen-Han Yu,et al.  The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information , 2010, Database J. Biol. Databases Curation.

[124]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[125]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[126]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[127]  J. Loper,et al.  Genomics of secondary metabolite production by Pseudomonas spp. , 2009, Natural product reports.

[128]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[129]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[130]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[131]  G. Challis,et al.  2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining , 2008, Proceedings of the National Academy of Sciences.

[132]  L. Straus,et al.  Archaeological implications of human-derived manganese coatings: a study of blackened bones in El Miron Cave, Cantabrian Spain , 2008 .

[133]  S. Horinouchi,et al.  Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces , 2007, Proceedings of the National Academy of Sciences.

[134]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[135]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[136]  Rekha Seshadri,et al.  Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 , 2005, Nature Biotechnology.

[137]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[138]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[140]  C. Médigue,et al.  Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Barbara J. Sitter,et al.  Investigation of Methods for Seven-Membered Ring Synthesis: A Practical Synthesis of 4-Oxo-5,6,7,8-tetrahydro-4H-cyclohepta[b]furan-3-carboxylic Acid , 2001 .

[142]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[143]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .