3D localized in vivo 1H spectroscopy of human brain by using a hybrid of 1D‐hadamard with 2D‐chemical shift imaging

We report acquisition of 3D image‐guided localized proton spectroscopy (1H‐MRS) in the human brain on a standard clinical imager. 3D coverage is achieved with a hybrid of chemical shift imaging (CSI) and transverse Hadamard spectroscopic imaging (HSI). 16 × 16 × 4 arrays of 3.5 and 1 ml voxels were obtained in 27 min. The spatially selective HSI 90° pulses incorporate naturally into a PRESS double spin‐echo sequence to subdivide the VOI into four partitions along its short axis. 2D CSI (16 × 16) is performed along the other long axes. Because the hybrid excites the spins in the entire VOI, a √N signal‐to‐noise‐ratio (SNR) gain per given examination time is realized compared with sequentially interleaving N 2D slices. A two‐fold gain in sensitivity is demonstrated in the brain for N = 4.

[1]  G B Matson,et al.  Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging , 1992, Neurology.

[2]  N. Sloane,et al.  Hadamard and Other Discrete Transforms in Spectroscopy , 1982 .

[3]  M. Weiner,et al.  Elevated Lactate and Alkalosis in Chronic Human Brain Infarction Observed by 1H and 31P MR Spectroscopic Imaging , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  O Henriksen,et al.  T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H‐1 MR spectroscopy , 1994, Journal of magnetic resonance imaging : JMRI.

[5]  A. Bizzi,et al.  Absolute Quantitation of Short TE Brain 1H‐MR Spectra and Spectroscopic Imaging Data , 1993, Journal of computer assisted tomography.

[6]  M Xue,et al.  Short echo time proton spectroscopy of human brain using a gradient head coil. , 1992, Magnetic resonance imaging.

[7]  G B Matson,et al.  3D phase encoding 1H spectroscopic imaging of human brain. , 1992, Magnetic resonance imaging.

[8]  Truman R. Brown,et al.  Application of Principal-Component Analysis for NMR Spectral Quantitation , 1995 .

[9]  H. Kauczor,et al.  3D TOF MR Angiography of Cerebral Arteriovenous Malformations after Radiosurgery , 1993, Journal of computer assisted tomography.

[10]  Alberto Bizzi,et al.  Proton spectroscopic imaging of human brain , 1992 .

[11]  J. Waugh Sensitivity in Fourier transform NMR spectroscopy of slowly relaxing systems , 1970 .

[12]  J H Duyn,et al.  Multisection proton MR spectroscopic imaging of the brain. , 1993, Radiology.

[13]  T R Brown,et al.  Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. , 1996, Journal of neurosurgery.

[14]  J. Duyn,et al.  Fast proton spectroscopic imaging of human brain using multiple spin‐echoes , 1993, Magnetic resonance in medicine.

[15]  John S. Leigh,et al.  Hadamard spectroscopic imaging (HSI) for multivolume localization , 1988 .

[16]  T R Brown,et al.  Practical applications of chemical shift imaging , 1992, NMR in biomedicine.

[17]  John S. Leigh,et al.  Transverse Hadamard spectroscopic imaging technique , 1990 .

[18]  T R Brown,et al.  A fast, reliable, automatic shimming procedure using 1H chemical-shift-imaging spectroscopy. , 1995, Journal of magnetic resonance. Series B.

[19]  G. Goelman,et al.  Two methods for peak RF power minimization of multiple inversion‐band pulses , 1997, Magnetic resonance in medicine.

[20]  T R Brown,et al.  In vivo phosphorus polarization transfer and decoupling from protons in three‐dimensional localized nuclear magnetic resonance spectroscopy of human brain , 1997, Magnetic resonance in medicine.

[21]  T R Brown,et al.  Dual interleaved 1H and proton‐decoupled‐31P in Vivo chemical shift imaging of human brain , 1994, Magnetic resonance in medicine.

[22]  T R Brown,et al.  Hybrid Three Dimensional (1D‐Hadamard, 2D‐Chemical Shift Imaging) Phosphorus Localized Spectroscopy of Phantom and Human Brain , 1995, Magnetic resonance in medicine.

[23]  Richard R. Ernst,et al.  Sensitivity Enhancement in Magnetic Resonance , 1966 .

[24]  D. Shungu,et al.  Sensitivity and localization enhancement in multinuclear in vivo NMR spectroscopy by outer volume presaturation , 1993, Magnetic resonance in medicine.

[25]  J S Taylor,et al.  Chemical shift imaging of human brain: axial, sagittal, and coronal P-31 metabolite images. , 1990, Radiology.

[26]  Truman R. Brown,et al.  The accuracy of quantification from 1D NMR spectra using the PIQABLE algorithm , 1989 .

[27]  W. Negendank,et al.  Studies of human tumors by MRS: A review , 1992, NMR in biomedicine.

[28]  G. Brix,et al.  Theoretical Description, Measurement, and Correction of Localization Errors in 31P Chemical-Shift Imaging , 1994 .

[29]  J. Frahm,et al.  Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites , 1989, Magnetic resonance in medicine.

[30]  C T Moonen,et al.  Short echo time proton MR spectroscopic imaging. , 1993, Journal of computer assisted tomography.

[31]  John S. Leigh,et al.  Errors of fourier chemical-shift imaging and their corrections , 1991 .

[32]  Double‐echo multislice proton spectroscopic imaging using Hadamard slice encoding , 1994, Magnetic resonance in medicine.

[33]  J. Frahm,et al.  On the identification of cerebral metabolites in localized 1H NMR spectra of human brain In vivo , 1991, NMR in biomedicine.