Numerically Computing Real Points on Algebraic Sets

Given a polynomial system f, a fundamental question is to determine if f has real roots. Many algorithms involving the use of infinitesimal deformations have been proposed to answer this question. In this article, we transform an approach of Rouillier, Roy, and Safey El Din, which is based on a classical optimization approach of Seidenberg, to develop a homotopy based approach for computing at least one point on each connected component of a real algebraic set. Examples are presented demonstrating the effectiveness of this parallelizable homotopy based approach.

[1]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[2]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[3]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[4]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[5]  A. Morgan,et al.  A homotopy for solving general polynomial systems that respects m-homogeneous structures , 1987 .

[6]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[7]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[8]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[9]  A. Morgan,et al.  Coefficient-parameter polynomial continuation , 1989 .

[10]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[11]  A. Morgan,et al.  Computing singular solutions to polynomial systems , 1992 .

[12]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[13]  A. Morgan,et al.  A power series method for computing singular solutions to nonlinear analytic systems , 1992 .

[14]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[15]  John F. Canny,et al.  Computing Roadmaps of General Semi-Algebraic Sets , 1991, Comput. J..

[16]  Joos Heintz,et al.  Description of the connected components of a semialgebraic set in single exponential time , 1994, Discret. Comput. Geom..

[17]  Charles W. Wampler,et al.  A product-decomposition bound for Bezout numbers , 1995 .

[18]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[19]  Fabrice Rouillier,et al.  Design of regular nonseparable bidimensional wavelets using Grobner basis techniques , 1998, IEEE Trans. Signal Process..

[20]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[21]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[22]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[23]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[24]  Andrew J. Sommese Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .

[25]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[26]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[27]  F. Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[28]  Jan Verschelde,et al.  Polyhedral end games for polynomial continuation , 2004, Numerical Algorithms.

[29]  Andrew J. Sommese,et al.  Homotopies for Intersecting Solution Components of Polynomial Systems , 2004, SIAM J. Numer. Anal..

[30]  Nicolai Vorobjov,et al.  Counting connected components of a semialgebraic set in subexponential time , 1992, computational complexity.

[31]  Ronald Cools,et al.  Symbolic homotopy construction , 2005, Applicable Algebra in Engineering, Communication and Computing.

[32]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[33]  Mohab Safey El Din,et al.  Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry , 2006, ArXiv.

[34]  Charles W. Wampler,et al.  Finding All Real Points of a Complex Curve , 2006 .

[35]  Arthur G. Erdman,et al.  A New Mobility Formula for Spatial Mechanisms , 2007 .

[36]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[37]  Jonathan D. Hauenstein,et al.  Stepsize control for adaptive multiprecision path tracking , 2008 .

[38]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[39]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[40]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[41]  Monique Laurent,et al.  A prolongation-projection algorithm for computing the finite real variety of an ideal , 2008, Theor. Comput. Sci..

[42]  Jonathan D. Hauenstein,et al.  A Numerical Local Dimension Test for Points on the Solution Set of a System of Polynomial Equations , 2009, SIAM J. Numer. Anal..

[43]  Frank Sottile,et al.  alphaCertified: certifying solutions to polynomial systems , 2010, ArXiv.

[44]  Jonathan D. Hauenstein,et al.  A Parallel Endgame , 2010 .

[45]  Jonathan D. Hauenstein,et al.  Regenerative cascade homotopies for solving polynomial systems , 2011, Appl. Math. Comput..

[46]  Anton Leykin,et al.  Numerical algebraic geometry , 2020, Applications of Polynomial Systems.

[47]  Frank Sottile,et al.  Khovanskii–Rolle Continuation for Real Solutions , 2009, Found. Comput. Math..

[48]  J. Hauenstein,et al.  Mechanism mobility and a local dimension test , 2011 .

[49]  Dustin Cartwright An Iterative Method Converging to a Positive Solution of Certain Systems of Polynomial Equations , 2011 .

[50]  Jonathan D. Hauenstein,et al.  Efficient path tracking methods , 2011, Numerical Algorithms.

[51]  Jonathan D. Hauenstein,et al.  Regeneration homotopies for solving systems of polynomials , 2010, Math. Comput..

[52]  Jonathan D. Hauenstein,et al.  Cell decomposition of almost smooth real algebraic surfaces , 2013, Numerical Algorithms.

[53]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .