Multi-objective topology optimization of a permanent magnet machine to reduce electromagnetic losses and cogging torque

[1]  Stephen P. Boyd,et al.  Optimal current waveforms for brushless permanent magnet motors , 2015, Int. J. Control.

[2]  R. Van Keer,et al.  Application of topological gradient and continuum sensitivity analysis to the multi-objective design optimization of a permanent-magnet excited synchronous machine , 2012 .

[3]  Piotr Adam Putek,et al.  Mitigation of the cogging torque and loss minimization in a permanent magnet machine using shape and topology optimization , 2016 .

[4]  Piotr Paplicki,et al.  Topology optimization of rotor poles in a permanent-magnet machine using level set method and continuum design sensitivity analysis , 2014 .

[5]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[6]  G. Bertotti General properties of power losses in soft ferromagnetic materials , 1988 .

[7]  Dong-Hun Kim,et al.  Efficient force calculations based on continuum sensitivity analysis , 2005, IEEE Transactions on Magnetics.

[8]  Ivan Cimrák,et al.  Material and Shape Derivative Method for Quasi-Linear Elliptic Systems with Applications in Inverse Electromagnetic Interface Problems , 2012, SIAM J. Numer. Anal..

[9]  Piotr Paplicki,et al.  Low Cogging Torque Design of Permanent Magnet Machine Using Modified Multi-Level Set Method With Total Variation Regularization , 2014, IEEE Transactions on Magnetics.

[10]  Joachim Schöberl,et al.  Numerical analysis of nonlinear multiharmonic eddy current problems , 2005, Numerische Mathematik.

[11]  Song-Yop Hahn,et al.  Design sensitivity analysis for nonlinear magnetostatic problems using finite element method , 1992 .

[12]  K. Yamazaki,et al.  Loss Analysis of Permanent-Magnet Motors With Concentrated Windings—Variation of Magnet Eddy-Current Loss Due to Stator and Rotor Shapes , 2009 .

[13]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[14]  Jung-Pyo Hong,et al.  Low Torque Ripple Rotor Design of the Interior Permanent Magnet Motor Using the Multi-Phase Level-Set and Phase-Field Concept , 2012, IEEE Transactions on Magnetics.

[15]  Song-Yop Hahn,et al.  Design sensitivity analysis for steady state eddy current problems by continuum approach , 1994 .

[16]  J.K. Sykulski,et al.  Applying continuum design sensitivity analysis combined with standard EM software to shape optimization in magnetostatic problems , 2004, IEEE Transactions on Magnetics.

[17]  A. Arkkio,et al.  Comparison of Demagnetization Models for Finite-Element Analysis of Permanent-Magnet Synchronous Machines , 2007, IEEE Transactions on Magnetics.

[18]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[19]  Mahdi Ashabani,et al.  Multiobjective Shape Optimization of Segmented Pole Permanent-Magnet Synchronous Machines With Improved Torque Characteristics , 2011, IEEE Transactions on Magnetics.

[20]  Michal Bonislawski,et al.  Design of Hybrid Excited Synchronous Machine for Electrical Vehicles , 2015, IEEE Transactions on Magnetics.

[21]  Piotr Putek,et al.  Minimization of cogging torque in permanent magnet machines using the topological gradient and adjoint sensitivity in multi-objective design , 2012 .

[22]  Andreas Bartel,et al.  Shape and topology optimization of a permanent-magnet machine under uncertainties , 2016 .

[23]  Claude Marchand,et al.  Multiphysics Design Methodology of Permanent-Magnet Synchronous Motors , 2007, IEEE Transactions on Vehicular Technology.

[24]  W. Q. Chu,et al.  On-Load Cogging Torque Calculation in Permanent Magnet Machines , 2013, IEEE Transactions on Magnetics.