Application of Pitzer's Equations for Modeling the Aqueous Thermodynamics of Actinide Species in Natural Waters: A Review

A review of the applicability of Pitzer's equations to the aqueous thermodynamics of actinide species in natural waters is presented. This review includes a brief historical perspective on the application of Pitzer's equations to actinides, information on the difficulties and complexities of studying and modeling the different actinide oxidation states, and a discussion of the use of chemical analogs for different actinide oxidation states. Included are tables of Pitzer ion–interaction parameters and associated standard state equilibrium constants for each actinide oxidation state. These data allow the modeling of the aqueous thermodynamics of different actinide oxidation states to high ionic strength.

[1]  K. Pitzer,et al.  THERMODYNAMICS OF ELECTROLYTES. XI. PROPERTIES OF 3-2, 4-2, AND OTHER HIGH-VALENCE TYPES , 1978 .

[2]  J. Ryan,et al.  Thorium(IV) hydrous oxide solubility , 1987 .

[3]  Scott A. Carpenter,et al.  Measurement and thermodynamic modeling of Np(V) solubility in aqueous K2CO3 solutions to high concentrations , 1997 .

[4]  Andrew R. Felmy,et al.  Uranium(IV) hydrolysis constants and solubility product of UO2.cntdot.xH2O(am) , 1990 .

[5]  Hans Wanner,et al.  Chemical thermodynamics of uranium , 1992 .

[6]  Robert C. Moore,et al.  Interaction of Neptunyl(V) and Uranyl(VI) with EDTA in NaCl Media: Experimental Study and Pitzer Modeling , 1998 .

[7]  J. I. Kim,et al.  Thermodynamics of Cm(III) in Concentrated Electrolyte Solutions. Carbonate Complexation at Constant Ionic Strength (1 m NaCl) , 1998 .

[8]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[9]  Andrew R. Felmy,et al.  The Solubility of Hydrous Thorium(IV) Oxide in Chloride Media: Development of an Aqueous Ion-Interaction Model , 1991 .

[10]  J. I. Kim,et al.  Thermodynamics of Neptunium(Y) in Concentrated Salt Solutions: Chloride Complexation and Ion Interaction (Pitzer) Parameters for the NpO+2 Ion , 1995 .

[11]  J. A. Schramke,et al.  The Solubility of Plutonium Hydroxide in Dilute Solution and in High-Ionic-Strength Chloride Brines , 1989 .

[12]  J. Ryan,et al.  Am(lll) Hydrolysis Constants and Solubility of Am(lll) Hydroxide , 1983 .

[13]  J. I. Kim,et al.  Thermodynamics of Neptunium(V) in Concentrated Salt Solutions: II. Ion Interaction (Pitzer) Parameters for Np(V) Hydrolysis Species and Carbonate Complexes , 1995 .

[14]  Andrew R. Felmy,et al.  The Solubility of Th(IV) and U(IV) Hydrous Oxides in Concentrated NaCl and MgCl2 Solutions , 1997 .

[15]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[16]  C. F. Coleman,et al.  The sulfate complexes of some trivalent transplutonium actinides and europium , 1972 .

[17]  David A. Dixon,et al.  The hydrolysis and carbonate complexation of strontium and calcium in aqueous solution. Use of molecular modeling calculations in the development of aqueous thermodynamic models , 1998 .

[18]  C. Novak,et al.  Solubility of NaNd(CO3)2 · 6 H2O(c) in Concentrated Na2C03 and NaHC03 Solutions , 1996 .

[19]  F. Millero Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength , 1992 .

[20]  John H. Weare,et al.  The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California , 1986 .

[21]  J. I. Kim,et al.  Bicarbonate Complexes of Trivalent Actinides - Stable or Unstable? , 1998 .

[22]  Andrew R. Felmy,et al.  The Solubility of Am0HC03(c) and the Aqueous Thermodynamics of the System Na+-Am3+-HC03–-C032-0H--H20 , 1990 .

[23]  S. Conradson,et al.  Thermodynamic models for highly charged aqueous species: Solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions , 1997 .

[24]  Andrew R. Felmy,et al.  An aqueous thermodynamic model for a high valence 4∶2 electrolyte Th4+−SO42− in the system Na+−K+−Li+−NH4+−Th4+−SO42−−HSO4−−H2O to high concentration , 1992 .

[25]  W. Runde,et al.  Neptunium(V) hydrolysis and carbonate complexation: Experimental and predicted neptunyl solubility in concentrated NaCl using the Pitzer approach , 1996 .