Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr–Nd–O isotopes of young hybrid volcanics of the Ischia island (South Italy)

Ischia, one active volcano of the Phlegraean Volcanic District, prone to very high risk, is dominated by a caldera formed 55 ka BP, followed by resurgence of the collapsed area. Over the past 3 ka, the activity extruded evolved potassic magmas; only a few low-energy explosive events were fed by less evolved magmas. A geochemical and Sr–Nd–O isotope investigation has been performed on minerals and glass from products of three of such eruptions, Molara, Vateliero, and Cava Nocelle (<2.6 ka BP). Data document strong mineralogical, geochemical, and isotopic heterogeneities likely resulting from mingling/mixing processes among mafic and felsic magmas that already fed the Ischia volcanism in the past. Detailed study on the most mafic magma has permitted to investigate its origin. The mantle sector below Ischia underwent subduction processes that modified its pristine chemical, isotopic, and redox conditions by addition of ≤1 % of sediment fluids/melts. Similar processes occurred from Southeast to Northwest along the Apennine compressive margin, with addition of up to 2.5 % of sediment-derived material. This is shown by volcanics with poorly variable, typical δ18O mantle values, and 87Sr/86Sr progressively increasing toward typical continental crust values. Multiple partial melting of this modified mantle generated distinct primary magmas that occasionally assimilated continental crust, acquiring more 18O than 87Sr. At Ischia, 7 % of Hercynian granodiorite assimilation produced isotopically distinct, K-basaltic to latitic magmas. A SW–NE regional tectonic structure gave these magmas coming from large depth the opportunity to mingle/mix with felsic magmas stagnating in shallower reservoirs, eventually triggering explosive eruptions.

[1]  R. Cioni,et al.  Carbonate-derived CO2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy , 2011 .

[2]  F. Yavuz,et al.  Evaluating micas in petrologic and metallogenic aspect: I–definitions and structure of the computer program MICA+ , 2003 .

[3]  J. Valley,et al.  Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust , 2004 .

[4]  J. Martí,et al.  THE GENERATION OF OVERPRESSURE IN FELSIC MAGMA CHAMBERS BY REPLENISHMENT , 1998 .

[5]  M. Mattei,et al.  Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins , 2009 .

[6]  M. Frezzotti,et al.  Coexisting calc-alkaline and ultrapotassic magmatism at Monti Ernici,Mid Latina Valley (Latium, central Italy) , 2007 .

[7]  I. Nicholls,et al.  Structure and Dynamics of a Silicic Magmatic System Associated with Caldera-Forming Eruptions at Batur Volcanic Field, Bali, Indonesia , 2005 .

[8]  H. Huppert,et al.  Effects of volatiles on mixing in calc-alkaline magma systems , 1982, Nature.

[9]  J. Sutter,et al.  Geochemistry and argon thermochronology of the Variscan Sila Batholith, southern Italy: source rocks and magma evolution , 1994 .

[10]  C. Freda,et al.  Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas , 2004 .

[11]  J. Eiler Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks , 2001 .

[12]  R. Mazzuoli,et al.  Geochemistry of recent volcanics of Ischia Island, Italy: Evidences for fractional crystallization and magma mixing , 1989 .

[13]  R. Mazzuoli,et al.  Magma mixing at Lipari (Aeolian Islands, Italy): Insights from textural and compositional features of phenocrysts , 2005 .

[14]  H. Craig,et al.  Oxygen isotope variations in ocean island basalt phenocrysts , 1997 .

[15]  G. Buchner Eruzioni vulcaniche e fenomeni vulcano-tettonici di età preistorica e storica nell’isola d’Ischia , 1986 .

[16]  M. J. Bas Using Geochemical Data: Evaluation, Presentation, Interpretation , 1994 .

[17]  Angelo Guerraggio,et al.  La ricerca scientifica , 2011 .

[18]  G. Orsi,et al.  Water speciation and Sr isotopic exchange during water-melt interaction: a combined NMR-TIMS study on the Cretaio Tephra (Ischia Island,south Italy) , 2004 .

[19]  D. James The Combined Use of Oxygen and Radiogenic Isotopes as Indicators of Crustal Contamination , 1981 .

[20]  D. Mattey,et al.  Crustal interaction during construction of ocean islands: PbSrNdO isotope geochemistry of the shield basalts of Gran Canaria, Canary Islands , 1997 .

[21]  R. Moretti,et al.  Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity-based approach , 2003 .

[22]  L. Civetta,et al.  Mingling in the magmatic system of ischia (Italy) in the past 5 ka , 1999 .

[23]  L. Pappalardo,et al.  Procida volcanic history: new insights into the evolution of the Phlegraean Volcanic District (Campania region, Italy) , 2004 .

[24]  T. Ohba,et al.  High-Magnesian Andesite Produced by Two-Stage Magma Mixing: a Case Study from Hachimantai, Northern Honshu, Japan , 2007 .

[25]  K. Wohletz,et al.  A comprehensive study of pumice formation and dispersal: the Cretaio Tephra of Ischia (Italy) , 1992 .

[26]  RenzoSartori The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere , 2003 .

[27]  A. Crawford,et al.  An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase , 1995 .

[28]  D. Hilton,et al.  Resolving sediment subduction and crustal contamination in the Lesser Antilles Island arc: A combined He-O-Sr isotope approach , 2002 .

[29]  R. Bateman The interplay between crystallization, replenishment and hybridization in large felsic magma chambers , 1995 .

[30]  M. Camarda,et al.  The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study , 2011 .

[31]  C. Harris,et al.  Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and evidence for assimilation , 2000 .

[32]  J. Wolff,et al.  Petrogenesis of mixed-magma, high-grade, peralkaline ignimbrite ‘TL’ (Gran Canaria): diverse styles of mixing in a replenished, zoned magma chamber , 2003 .

[33]  Fuat Yavuz,et al.  PYROX: A computer program for the IMA pyroxene classification and calculation scheme 1 1 Code availa , 2001 .

[34]  Marshall I. Weisler,et al.  Geochemical characteristics of West Molokai shield‐ and postshield‐stage lavas: Constraints on Hawaiian plume models , 2006 .

[35]  R. Cioni,et al.  Compositional Layering and Syn-eruptive Mixing of a Periodically Refilled Shallow Magma Chamber: the AD 79 Plinian Eruption of Vesuvius , 1995 .

[36]  P. Scarlato,et al.  Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): Clues to the source and evolution of ultrapotassic magmas , 2006 .

[37]  I. Arienzo,et al.  The magmatic feeding system of the Campi Flegrei caldera: Architecture and temporal evolution , 2011 .

[38]  M. Clynne A Complex Magma Mixing Origin for Rocks Erupted in 1915, Lassen Peak, California , 1999 .

[39]  L. Civetta,et al.  Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany , 2002 .

[40]  A. D. Edgar The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies , 1987, Geological Society, London, Special Publications.

[41]  G. Orsi,et al.  Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 k.y. , 2010 .

[42]  Yongfeng Zhu,et al.  Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan , 2004 .

[43]  P. Maurel,et al.  Étude expérimentale de la distribution de l'aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques : teneur en chrome des spinelles , 1982 .

[44]  C. Cannatelli,et al.  Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy) , 2007 .

[45]  A. Zanchi,et al.  Simple-shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia , 1991 .

[46]  M. Menzies,et al.  The volcanism of southern Italy: Role of subduction and the relationship between potassic and sodic alkaline magmatism , 1989 .

[47]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[48]  C. Williams,et al.  A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles. , 2007 .

[49]  R. Moretti,et al.  The Deep Plumbing System of Ischia: a Physico-chemical Window on the Fluid-saturated and CO2-sustained Neapolitan Volcanism (Southern Italy) , 2013 .

[50]  G. Wörner,et al.  Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, West Germany) , 1985 .

[51]  S. Sparks,et al.  Magma mixing: a mechanism for triggering acid explosive eruptions , 1977, Nature.

[52]  Elizabeth Cottrell,et al.  Water and the Oxidation State of Subduction Zone Magmas , 2009, Science.

[53]  M. Wilson,et al.  Cenozoic volcanism in the Mediterranean area , 2007 .

[54]  N. Rock,et al.  The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: Computerization and its consequences , 1990 .

[55]  E. Hauri,et al.  Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume , 1998 .

[56]  G. Orsi,et al.  Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: The Ischia island (Italy) case study , 2006 .

[57]  G. Orsi,et al.  Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy) , 2009 .

[58]  A. Peccerillo,et al.  Oxygen Isotopic Variations in the Clinopyroxene from the Filicudi Volcanic Rocks (Aeolian Islands, Italy): Implications for Open-System Magma Evolution , 2008 .

[59]  C. Macpherson,et al.  Geochemical and Sr–O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, West Java, Indonesia , 2010 .

[60]  G. Rolandi,et al.  14C age of the “Museum Breccia” (Campi Flegrei) and its relevance for the origin of the Campanian Ignimbrite , 1991 .

[61]  Massimo D'Antonio,et al.  Evidence for Multi-stage Magmatic Evolution during the past 60 kyr at Campi Flegrei (Italy) Deduced from Sr, Nd and Pb Isotope Data , 2002 .

[62]  I. Arienzo,et al.  Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy , 2007 .

[63]  L. Civetta,et al.  B/Nb and δ11B systematics in the Phlegrean Volcanic District, Italy , 2004 .

[64]  K. Wada,et al.  Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand , 2002 .

[65]  F. Terrasi,et al.  14C geochronological constraints for the volcanic history of the island of Ischia (Italy) over the last 5000 years , 1996 .

[66]  M. Streck,et al.  Enrichment of basalt and mixing of dacite in the rootzone of a large rhyolite chamber: inclusions and pumices from the Rattlesnake Tuff, Oregon , 1999 .

[67]  I. Arienzo,et al.  The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy) , 2011 .

[68]  A. Peccerillo,et al.  Sr-Nd-Pb-O isotopic evidence for decreasing crustal contamination with ongoing magma evolution at Alicudi volcano (Aeolian arc, Italy): implications for style of magma-crust interaction and for mantle source compositions , 2004 .

[69]  L. Vezzoli,et al.  Modes and times of caldera resurgence: The < 10 ka evolution of Ischia Caldera, Italy, from high-precision archaeomagnetic dating , 2009 .

[70]  D. Mattey,et al.  Oxygen isotope ratios of phenocrysts from alkali basalts of the Pannonian basin: Evidence for an O-isotopically homogeneous upper mantle beneath a subduction-influenced area , 1998 .

[71]  I. Bindeman Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis , 2008 .

[72]  V. Acocella,et al.  Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism , 2006 .

[73]  M. A. Di Vito,et al.  The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration , 1996 .

[74]  I. Nikogosian,et al.  Heterogeneous mantle sources of potassium-rich magmas in central-southern Italy: Melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley) , 2010 .

[75]  J. Wolff,et al.  Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits , 1989, Geological Society, London, Special Publications.

[76]  P. Papale,et al.  The deep magmatic system of the Campi Flegrei caldera (Italy) , 2008 .

[77]  L. Danyushevsky,et al.  Petrolog3: Integrated software for modeling crystallization processes , 2011 .

[78]  F. Spera Energy-constrained open-system magmatic processes I : General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation , 2001 .

[79]  Grant Heiken,et al.  Facing Volcanic and Related Hazards in the Neapolitan Area , 2013 .

[80]  I. Arienzo,et al.  Magmatic History of Somma–Vesuvius on the Basis of New Geochemical and Isotopic Data from a Deep Borehole (Camaldoli della Torre) , 2007 .

[81]  G. Wörner,et al.  Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei–Italy) magma chamber , 2009 .

[82]  A. Aiuppa,et al.  A model for Ischia hydrothermal system: Evidences from the chemistry of thermal groundwaters , 2009 .

[83]  Richard J. Brown,et al.  New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy) , 2008 .

[84]  L. Civetta,et al.  Sr- and Nd-isotope and trace-element constraints on the chemical evolution of the magmatic system of Ischia (Italy) in the last 55 ka , 1991 .

[85]  Fuat Yavuz,et al.  WinAmphcal: A Windows program for the IMA‐04 amphibole classification , 2007 .

[86]  C. Langmuir,et al.  A general mixing equation with applications to Icelandic basalts , 1978 .

[87]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[88]  G. Dobosi,et al.  Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia , 1992 .

[89]  R. Esposito,et al.  Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy) , 2011 .

[90]  A. Bertagnini,et al.  Eruptive Dynamics and Petrogenetic Processes in a very Shallow Magma Reservoir: the 1906 Eruption of Vesuvius , 1993 .

[91]  R. Moretti Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts , 2005 .

[92]  L. Civetta,et al.  Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity , 1999 .

[93]  A. Boyce,et al.  Exhumation of an active magmatic–hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy) , 2009, Journal of the Geological Society.

[94]  P. Papale,et al.  The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into present activity and future scenarios , 2010 .

[95]  M. D. Murphy,et al.  Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies , 2000 .

[96]  L. Civetta,et al.  Step-filling and development of a three-layer magma chamber: the Neapolitan Yellow Tuff case history , 1995 .

[97]  S. Nakada,et al.  Remobilization of Highly Crystalline Felsic Magma by Injection of Mafic Magma: Constraints from the Middle Sixth Century Eruption at Haruna Volcano, Honshu, Japan , 2007 .

[98]  R. Moretti,et al.  A CO2-rich magma source beneath the Phlegraean Volcanic District (Southern Italy): Evidence from a melt inclusion study , 2011 .

[99]  A. Peccerillo,et al.  Relationships between intermediate and acidic rocks in orogenic granitoid suites: petrological, geochemical and isotopic (Sr, Nd, Pb) data from Capo Vaticano (southern Calabria, Italy) , 1991 .

[100]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .