Blockchain Nash Dynamics and the Pursuit of Compliance

We study Nash-dynamics in the context of blockchain protocols. Specifically, we introduce a formal model, within which one can assess whether the Nash dynamics can lead utility maximizing participants to defect from “honest” protocol operation, towards variations that exhibit one or more undesirable infractions, such as abstaining from participation and extending conflicting protocol histories. Blockchain protocols that do not lead to such infraction states are said to be compliant. Armed with this model, we study the compliance of various Proof-of-Work (PoW) and Proof-of-Stake (PoS) protocols, with respect to different utility functions and reward schemes, leading to the following results: i) PoS ledgers under resource-proportional rewards can be compliant if costs are negligible, but non-compliant if costs are significant, ii) PoW and PoS under block-proportional rewards exhibit different compliance behavior, depending on the lossiness of the network, iii) considering externalities, such as exchange rate fluctuations, we quantify the benefit of economic penalties in the context of PoS protocols with respect to compliance.

[1]  Rafael Dowsley,et al.  ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement , 2019, IACR Cryptol. ePrint Arch..

[2]  Aggelos Kiayias,et al.  Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain , 2018, EUROCRYPT.

[3]  Aggelos Kiayias,et al.  Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[4]  Mohammad Hossein Manshaei,et al.  On Incentive Compatible Role-Based Reward Distribution in Algorand , 2019, 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[5]  Aggelos Kiayias,et al.  Account Management in Proof of Stake Ledgers , 2020, IACR Cryptol. ePrint Arch..

[6]  Daniel Tschudi,et al.  Proof-of-Stake Protocols for Privacy-Aware Blockchains , 2019, IACR Cryptol. ePrint Arch..

[7]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[8]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[9]  Stefan Dziembowski,et al.  Proofs of Space , 2015, CRYPTO.

[10]  Aggelos Kiayias,et al.  Blockchain Mining Games , 2016, EC.

[11]  Amos Fiat,et al.  Energy Equilibria in Proof-of-Work Mining , 2019, EC.

[12]  Ghassan O. Karame,et al.  Securing Proof-of-Stake Blockchain Protocols , 2017, DPM/CBT@ESORICS.

[13]  S. Nakamoto,et al.  Bitcoin: A Peer-to-Peer Electronic Cash System , 2008 .

[14]  Sreeram Kannan,et al.  Everything is a Race and Nakamoto Always Wins , 2020, IACR Cryptol. ePrint Arch..

[15]  Matthew Green,et al.  Zerocoin: Anonymous Distributed E-Cash from Bitcoin , 2013, 2013 IEEE Symposium on Security and Privacy.

[16]  Cyril Grunspan,et al.  On profitability of selfish mining , 2018, ArXiv.

[17]  Emin Gün Sirer,et al.  Majority Is Not Enough: Bitcoin Mining Is Vulnerable , 2013, Financial Cryptography.

[18]  William J. Baumol,et al.  Welfare Economics And The Theory Of The State , 1953 .

[19]  Daniel Tschudi,et al.  Afgjort: A Partially Synchronous Finality Layer for Blockchains , 2020, SCN.

[20]  Leonid Reyzin,et al.  Beyond Hellman's Time-Memory Trade-Offs with Applications to Proofs of Space , 2017, ASIACRYPT.

[21]  Iddo Bentov,et al.  How to Use Bitcoin to Play Decentralized Poker , 2015, CCS.

[22]  Steve Chien,et al.  Convergence to approximate Nash equilibria in congestion games , 2007, SODA '07.

[23]  Aviv Zohar,et al.  Secure High-Rate Transaction Processing in Bitcoin , 2015, Financial Cryptography.

[24]  Ilan Orlov,et al.  Proofs of Space-Time and Rational Proofs of Storage , 2019, IACR Cryptol. ePrint Arch..

[25]  Paolo Serafino,et al.  Blockchain Mining Games with Pay Forward , 2019, WWW.

[26]  Joshua A. Kroll,et al.  The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries , 2013 .

[27]  Aggelos Kiayias,et al.  Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol , 2017, CRYPTO.

[28]  Vitalik Buterin,et al.  Casper the Friendly Finality Gadget , 2017, ArXiv.

[29]  Rafael Dowsley,et al.  Kaleidoscope: An Efficient Poker Protocol with Payment Distribution and Penalty Enforcement , 2018, IACR Cryptol. ePrint Arch..

[30]  Aggelos Kiayias,et al.  The Bitcoin Backbone Protocol with Chains of Variable Difficulty , 2017, CRYPTO.

[31]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[32]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[33]  Elaine Shi,et al.  FruitChains: A Fair Blockchain , 2017, IACR Cryptol. ePrint Arch..

[34]  Aggelos Kiayias,et al.  Ouroboros-BFT: A Simple Byzantine Fault Tolerant Consensus Protocol , 2018, IACR Cryptol. ePrint Arch..

[35]  Jeffrey S. Rosenschein,et al.  Bitcoin Mining Pools: A Cooperative Game Theoretic Analysis , 2015, AAMAS.

[36]  Pramod Viswanath,et al.  Compounding of Wealth in Proof-of-Stake Cryptocurrencies , 2018, Financial Cryptography.

[37]  Kartik Nayak,et al.  Stubborn Mining: Generalizing Selfish Mining and Combining with an Eclipse Attack , 2016, 2016 IEEE European Symposium on Security and Privacy (EuroS&P).

[38]  Aggelos Kiayias,et al.  Coalition-safe equilibria with virtual payoffs , 2021, AFT.

[39]  Aviv Zohar,et al.  Optimal Selfish Mining Strategies in Bitcoin , 2015, Financial Cryptography.

[40]  Ueli Maurer,et al.  But Why does it Work? A Rational Protocol Design Treatment of Bitcoin , 2018, IACR Cryptol. ePrint Arch..

[41]  Krzysztof Pietrzak,et al.  Simple Proofs of Sequential Work , 2018, IACR Cryptol. ePrint Arch..

[42]  Emin Gün Sirer,et al.  Bitcoin-NG: A Scalable Blockchain Protocol , 2015, NSDI.

[43]  Sunny King,et al.  PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake , 2012 .

[44]  George Danezis,et al.  Winkle: Foiling Long-Range Attacks in Proof-of-Stake Systems , 2020, IACR Cryptol. ePrint Arch..

[45]  S. Matthew Weinberg,et al.  On the Instability of Bitcoin Without the Block Reward , 2016, CCS.

[46]  Vitalik Buterin,et al.  Incentives in Ethereum’s Hybrid Casper Protocol , 2019, 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).

[47]  Aggelos Kiayias,et al.  The Bitcoin Backbone Protocol: Analysis and Applications , 2015, EUROCRYPT.

[48]  Eli Ben-Sasson,et al.  Zerocash: Decentralized Anonymous Payments from Bitcoin , 2014, 2014 IEEE Symposium on Security and Privacy.

[49]  Tim Roughgarden,et al.  An Axiomatic Approach to Block Rewards , 2019, AFT.

[50]  Silvio Micali,et al.  Algorand: Scaling Byzantine Agreements for Cryptocurrencies , 2017, IACR Cryptol. ePrint Arch..

[51]  Hubert Ritzdorf,et al.  On the Security and Performance of Proof of Work Blockchains , 2016, IACR Cryptol. ePrint Arch..

[52]  Aggelos Kiayias,et al.  SoK: A Consensus Taxonomy in the Blockchain Era , 2020, IACR Cryptol. ePrint Arch..

[53]  Silvio Micali,et al.  ALGORAND AGREEMENT: Super Fast and Partition Resilient Byzantine Agreement , 2018, IACR Cryptol. ePrint Arch..

[54]  Aggelos Kiayias,et al.  Tight Consistency Bounds for Bitcoin , 2020, IACR Cryptol. ePrint Arch..

[55]  Sarah Meiklejohn,et al.  Betting on Blockchain Consensus with Fantomette , 2018, ArXiv.

[56]  S. Matthew Weinberg,et al.  Bitcoin: A Natural Oligopoly , 2018, ITCS.

[57]  Tyler Moore,et al.  Game-Theoretic Analysis of DDoS Attacks Against Bitcoin Mining Pools , 2014, Financial Cryptography Workshops.

[58]  Aggelos Kiayias,et al.  Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability , 2018, IACR Cryptol. ePrint Arch..

[59]  Georg Fuchsbauer,et al.  SpaceMint: A Cryptocurrency Based on Proofs of Space , 2018, ERCIM News.

[60]  Josef Kittler,et al.  Advances in Cryptology – CRYPTO 2017 , 2017, Lecture Notes in Computer Science.