All‐Solid‐State Printed Bipolar Li–S Batteries

[1]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[2]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[3]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[4]  Guangjie Shao,et al.  High capacity and cycle stability Rechargeable Lithium–Sulfur batteries by sandwiched gel polymer electrolyte , 2016 .

[5]  JongTae Yoo,et al.  Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing , 2018 .

[6]  Soojin Park,et al.  Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. , 2015, Nano letters.

[7]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[8]  L. M. Rodriguez-Martinez,et al.  Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells. , 2017, Journal of Physical Chemistry Letters.

[9]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[10]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[11]  H. J. Walls,et al.  Yield stress and wall slip phenomena in colloidal silica gels , 2003 .

[12]  John A Rogers,et al.  Imprintable, Bendable, and Shape‐Conformable Polymer Electrolytes for Versatile‐Shaped Lithium‐Ion Batteries , 2013, Advanced materials.

[13]  Jong-Won Lee,et al.  Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte. , 2018, ChemSusChem.

[14]  Itaru Honma,et al.  Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex , 2015, Scientific Reports.

[15]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[16]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[17]  Ya‐Xia Yin,et al.  Progress of the Interface Design in All‐Solid‐State Li–S Batteries , 2018 .

[18]  Hongkyung Lee,et al.  A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries , 2017 .

[19]  Gad Marom,et al.  Dispersions of Surface‐Modified Carbon Nanotubes in Water‐Soluble and Water‐Insoluble Polymers , 2006 .

[20]  Jiaguo Yu,et al.  Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance , 2013 .

[21]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[22]  Yan‐Bing He,et al.  Progress and Perspective of Solid‐State Lithium–Sulfur Batteries , 2018 .

[23]  Sang Kyu Kwak,et al.  Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases , 2019, Energy & Environmental Science.

[24]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[25]  W. Russel,et al.  Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion , 2000 .

[26]  Yiping Guo,et al.  Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites , 2009 .

[27]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[28]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[29]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[30]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[31]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[32]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[33]  Jang‐Kyo Kim,et al.  Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments , 2006 .

[34]  Keun-Ho Choi,et al.  Wearable Supercapacitors Printed on Garments , 2018 .

[35]  R. Buscall,et al.  The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip , 1993 .

[36]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[37]  L. Ci,et al.  Enhancing the safety and electrochemical performance of ether based lithium sulfur batteries by introducing an efficient flame retarding additive , 2016 .

[38]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[39]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[40]  Ming Liu,et al.  Novel gel polymer electrolyte for high- performance lithium-sulfur batteries , 2016 .

[41]  D. Cheng Thixotropy , 1987, International journal of cosmetic science.