Embeddability in the 3-Sphere Is Decidable

We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, that is, an essential curve in the boundary of X bounding a disk in S3 \ X with length bounded by a computable function of the number of tetrahedra of X.

[1]  Dmitry Tonkonog Embedding 3-manifolds with boundary into closed 3-manifolds , 2011 .

[2]  Horst Schubert,et al.  Die eindeutige Zerlegbarkeit eines Knotens in Primknoten , 1949 .

[3]  Marc Lackenby,et al.  The efficient certification of knottedness and Thurston norm , 2016, Advances in Mathematics.

[4]  Benson Farb,et al.  A Primer on Mapping Class Groups (Pms-49) , 2011 .

[5]  Abigail Thompson,et al.  Thin Position and the Recognition Problem for $\bold{S^3}$ , 1994 .

[6]  Geoffrey Hemion,et al.  On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .

[7]  Sergei V Ivanov,et al.  The computational complexity of basic decision problems in 3-dimensional topology , 2008 .

[8]  A. Hatcher,et al.  Boundary Curves of Incompressible Surfaces , 1982 .

[9]  Jirí Matousek,et al.  Untangling Two Systems of Noncrossing Curves , 2013, Graph Drawing.

[10]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[11]  R. Bing An Alternative Proof that 3-Manifolds Can be Triangulated , 1959 .

[12]  William Jaco,et al.  Lectures on three-manifold topology , 1980 .

[13]  R. Bing The Geometric Topology of 3-Manifolds , 1983 .

[14]  William Jaco,et al.  Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .

[15]  Aleksandar Mijatovic Simplical structures of knot complements , 2003 .

[16]  S. Matveev,et al.  Classification of sufficiently large three-dimensional manifolds , 1997 .

[17]  Eric Sedgwick,et al.  FINDING PLANAR SURFACES IN KNOT- AND LINK-MANIFOLDS , 2006, math/0608700.

[18]  Sergey Nikitin On 3-manifolds , 2005 .

[19]  L. Neuwirth,et al.  An algorithm for the construction of 3-manifolds from 2-complexes , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[21]  J. Rubinstein,et al.  An Algorithm to Recognize the 3-Sphere , 1995 .

[22]  David Bachman,et al.  Stabilizing and destabilizing Heegaard splittings of sufficiently complicated 3-manifolds , 2012, 1201.3438.

[23]  John Luecke,et al.  Knots are determined by their complements , 1989 .

[24]  Tao Li,et al.  Thin position and planar surfaces for graphs in the 3-sphere , 2008, 0807.2865.

[25]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[26]  Eric Sedgwick,et al.  Almost normal surfaces with boundary , 2012, 1203.4632.

[27]  Jirí Matousek,et al.  Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension , 2012, SIAM J. Comput..

[28]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[29]  Abigail Thompson,et al.  THIN POSITION AND THE RECOGNITION PROBLEM FOR S3 , 1994 .

[30]  Ulrich Oertel,et al.  An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .

[31]  A. Skopenkov,et al.  A generalization of Neuwirth's theorem on thickening 2-dimensional polyhedra , 1995 .

[32]  Greg Kuperberg,et al.  Knottedness is in NP, modulo GRH , 2011, ArXiv.

[33]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[34]  Saul Schleimer,et al.  SPHERE RECOGNITION LIES IN NP , 2004, math/0407047.

[35]  W. Thurston,et al.  The Computational Complexity of Knot Genus and Spanning Area , 2002, math/0205057.

[36]  Jirí Matousek,et al.  Polynomial-Time Homology for Simplicial Eilenberg–MacLane Spaces , 2012, Found. Comput. Math..

[37]  J. Hyam Rubinstein,et al.  0-Efficient Triangulations of 3-Manifolds , 2002 .

[38]  David Bachman,et al.  Topological Index Theory for surfaces in 3-manifolds , 2009, 0901.0208.

[39]  A. Coward,et al.  An upper bound on Reidemeister moves , 2011, 1104.1882.

[40]  Marc Lackenby,et al.  Elementary knot theory , 2016, 1604.03778.

[41]  Tony Huynh,et al.  Explicit bounds for graph minors , 2018, J. Comb. Theory, Ser. B.

[42]  Eric Sedgwick,et al.  Decision problems in the space of Dehn fillings , 1998 .

[43]  Benjamin A. Burton,et al.  Finding Non-orientable Surfaces in 3-Manifolds , 2016, Discrete & Computational Geometry.

[44]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[45]  M. Lackenby A polynomial upper bound on Reidemeister moves , 2013, 1302.0180.

[46]  Jirí Matousek,et al.  Computing All Maps into a Sphere , 2011, J. ACM.

[47]  Jonathan L. Gross,et al.  A Linear Time Planarity Algorithm for 2-Complexes , 1979, JACM.

[48]  R. Fox,et al.  On the Imbedding of Polyhedra in 3-Space , 1948 .

[49]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[50]  Michelle Stocking,et al.  Almost normal surfaces in 3-manifolds , 1999 .

[51]  Marek Krcál,et al.  Algorithmic Solvability of the Lifting-Extension Problem , 2013, Discrete & Computational Geometry.

[52]  W. Haken Theorie der Normalflächen , 1961 .