Anatomical Basis for Functional Specialization

[1]  Anders M. Dale,et al.  Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity , 2010, NeuroImage.

[2]  M. Axer,et al.  Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light , 2001, Journal of Neuroscience Methods.

[3]  Katrin Amunts,et al.  Atlases of the Human Brain: Tools for Functional Neuroimaging , 2006 .

[4]  K. Zilles,et al.  Somatotopy and Attentional Modulation of the Human Parietal and Opercular Regions , 2004, The Journal of Neuroscience.

[5]  C. Economo,et al.  Eine neue art spezialzellen des lobus cinguli und lobus insulae , 1926 .

[6]  Karl Zilles,et al.  Cytology and receptor architecture of human anterior cingulate cortex , 2008, The Journal of comparative neurology.

[7]  Gereon R Fink,et al.  The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. , 2007, Cerebral cortex.

[8]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[9]  K. Amunts,et al.  Identifying human parieto‐insular vestibular cortex using fMRI and cytoarchitectonic mapping , 2006, Human brain mapping.

[10]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[11]  Simon B. Eickhoff,et al.  BA3b and BA1 activate in a serial fashion after median nerve stimulation: Direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps , 2011, NeuroImage.

[12]  C. Pierpaoli,et al.  Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. , 1999, Magnetic resonance imaging.

[13]  George Paxinos,et al.  Receptors in the Human Nervous System , 1991 .

[14]  A. Wenzel,et al.  Synapse‐specific localization of NMDA and GABAA receptor subunits revealed by antigen‐retrieval immunohistochemistry , 1998, The Journal of comparative neurology.

[15]  H. Braak,et al.  A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain , 1976, Brain Research.

[16]  Simon B. Eickhoff,et al.  Segregation of visceral and somatosensory afferents: An fMRI and cytoarchitectonic mapping study , 2006, NeuroImage.

[17]  A. Schleicher,et al.  Transmitter receptors and functional anatomy of the cerebral cortex , 2004, Journal of anatomy.

[18]  Lewis D. Griffin,et al.  A 3D fiber model of the human brainstem. , 2002, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[19]  Katrin Amunts,et al.  Postnatal development of the human primary motor cortex: a quantitative cytoarchitectonic analysis , 1995, Anatomy and Embryology.

[20]  Alan C. Evans,et al.  Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. , 1993, Journal of neurophysiology.

[21]  J. Morrison,et al.  Spindle neurons of the human anterior cingul. Ate cortex , 1995, The Journal of comparative neurology.

[22]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[23]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[24]  Simon B. Eickhoff,et al.  Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex , 2007, NeuroImage.

[25]  Robert Turner,et al.  Voxel-based cortical thickness measurements in MRI , 2008, NeuroImage.

[26]  Anders M. Dale,et al.  Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer , 2006, NeuroImage.

[27]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[28]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[29]  Leslie G. Ungerleider,et al.  Dominance of the right hemisphere and role of area 2 in human kinesthesia. , 2005, Journal of neurophysiology.

[30]  K. Amunts,et al.  Multimodal architectonic mapping of human superior temporal gyrus , 2005, Anatomy and Embryology.

[31]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[32]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[33]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[34]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[36]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[37]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[38]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[39]  J. Voogd CHAPTER 11 – Cerebellum and Precerebellar Nuclei , 2004 .

[40]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[41]  Friedrich Sanides,et al.  Zur Architektonik der menschlichen Sehrinde und den Prinzipien ihrer Entwicklung , 1965, Deutsche Zeitschrift für Nervenheilkunde.

[42]  Alan C. Evans,et al.  Where in-vivo imaging meets cytoarchitectonics: The relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET , 2011, NeuroImage.

[43]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[44]  K. Amunts,et al.  Myeloarchitecture and Maps of the Cerebral Cortex , 2015 .

[45]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[46]  Katrin Amunts,et al.  An observer-independent cytoarchitectonic mapping of the human cortex using a stereological approach , 1998 .

[47]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[48]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[49]  S. Sesack,et al.  Preembedding Immunoelectron Microscopy: Applications for Studies of the Nervous System , 2006 .

[50]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[51]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[52]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[53]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[54]  Karl Zilles,et al.  In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography , 2003, NeuroImage.

[55]  K. Zilles,et al.  Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex , 2007, Brain Structure and Function.

[56]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[57]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[58]  B. Balas,et al.  Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants , 2009, Front. Hum. Neurosci..

[59]  A. Dale,et al.  High consistency of regional cortical thinning in aging across multiple samples. , 2009, Cerebral cortex.

[60]  Karl Zilles,et al.  A1 adenosine receptor PET using [18F]CPFPX: Displacement studies in humans , 2006, NeuroImage.

[61]  K. Zilles,et al.  Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex , 2001, NeuroImage.

[62]  Alan C. Evans,et al.  Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel‐based morphometry , 2009, Human brain mapping.

[63]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[64]  K. Zilles CHAPTER 27 – Architecture of the Human Cerebral Cortex: Regional and Laminar Organization , 2004 .

[65]  H. Axer,et al.  Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy , 1999, Psychiatry Research: Neuroimaging.

[66]  H. Axer,et al.  Visualization of nerve fiber orientation in gross histological sections of the human brain , 2000, Microscopy research and technique.

[67]  Lewis D. Griffin,et al.  Polarized light imaging of white matter architecture , 2007, Microscopy research and technique.

[68]  Katrin Amunts,et al.  Observer‐independent analysis of high‐resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas , 2007, Human brain mapping.

[69]  Karl Zilles,et al.  Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach , 2005, NeuroImage.

[70]  Katrin Amunts,et al.  Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2 , 2005, NeuroImage.

[71]  W. Nauta,et al.  Silver impregnation of degenerating axons in the central nervous system: a modified technic. , 1954, Stain technology.

[72]  Alan C. Evans,et al.  Measurement of Cortical Thickness Using an Automated 3-D Algorithm: A Validation Study , 2001, NeuroImage.

[73]  K. Rockland Visual cortical organization at the single axon level: a beginning , 2002, Neuroscience Research.

[74]  Floris G. Wouterlood,et al.  Combined Fluorescence Methods to Determine Synapses in the Light Microscope: Multilabel Confocal Laser Scanning Microscopy , 2006 .

[75]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[76]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[77]  K Zilles,et al.  Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. , 2008, Cerebral cortex.

[78]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[79]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[80]  K. Amunts,et al.  Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors , 2009, Front. Hum. Neurosci..

[81]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[82]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[83]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[84]  P. Somogyi,et al.  Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[86]  Lennart Heimer,et al.  Neuroanatomical tract-tracing 3 : molecules, neurons, and systems , 2006 .

[87]  Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. , 1997, Journal fur Hirnforschung.

[88]  Friedrich Sanides,et al.  Die Grenzerscheinungen am Rande der menschlichen Sehrinde , 1965, Deutsche Zeitschrift für Nervenheilkunde.

[89]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. , 1996, Journal of magnetic resonance.

[90]  Peter A. Tass,et al.  Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps , 2006, NeuroImage.

[91]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[92]  P. Somogyi,et al.  Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze‐fracture replica immunolabelling , 2010, The European journal of neuroscience.

[93]  Soyoung Q. Park,et al.  The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans , 2010, Brain Structure and Function.

[94]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[95]  M M Mesulam,et al.  Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex , 1988, The Journal of comparative neurology.

[96]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[97]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[98]  A. Schleicher,et al.  Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas , 2007, Human brain mapping.

[99]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[100]  Katrin Amunts,et al.  Gender-Specific Left–Right Asymmetries in Human Visual Cortex , 2007, The Journal of Neuroscience.

[101]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[102]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[103]  J. Dejerine Anatomie des centres nerveux , 1895 .

[104]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[105]  Floris G. Wouterlood,et al.  Neuroanatomical Tract-Tracing 3 , 2006 .

[106]  E. Braak On the structure of the human striate area. , 1982, Advances in anatomy, embryology, and cell biology.

[107]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[108]  Russell A. Poldrack,et al.  In praise of tedious anatomy , 2007, NeuroImage.

[109]  Christian Boy,et al.  Quantification of Cerebral A1 Adenosine Receptors in Humans using [18F]CPFPX and PET , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[110]  Christoph Palm,et al.  Signal enhancement in polarized light imaging by means of independent component analysis , 2010, NeuroImage.

[111]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[112]  K. Amunts,et al.  Receptor mapping: architecture of the human cerebral cortex , 2009, Current opinion in neurology.

[113]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[114]  J. Allman,et al.  Intuition and autism: a possible role for Von Economo neurons , 2005, Trends in Cognitive Sciences.

[115]  Chet C. Sherwood,et al.  Evolution of Specialized Pyramidal Neurons in Primate Visual and Motor Cortex , 2003, Brain, Behavior and Evolution.

[116]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  Nicola Palomero-Gallagher,et al.  Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: Relations to visual and somatosensory regions , 2005, NeuroImage.

[118]  K. Fujimoto Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. , 1995, Journal of cell science.

[119]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[120]  Karl J. Friston,et al.  Tractography-based priors for dynamic causal models , 2009, NeuroImage.

[121]  Katrin Amunts,et al.  Chapter 18 – High-Resolution Fiber and Fiber Tract Imaging Using Polarized Light Microscopy in the Human, Monkey, Rat, and Mouse Brain , 2016 .

[122]  H. Braak,et al.  The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain , 1976, Cell and Tissue Research.

[123]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[124]  Katrin Amunts,et al.  Cytoarchitecture and Maps of the Human Cerebral Cortex , 2015 .

[125]  A. Schleicher,et al.  Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex , 1995, The Journal of comparative neurology.

[126]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[127]  Katrin Amunts,et al.  Cytoarchitecture and probabilistic maps of the human posterior insular cortex. , 2010, Cerebral cortex.

[128]  Suzanne E. Welcome,et al.  Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children , 2022 .

[129]  A. Schleicher,et al.  Receptor architecture of human cingulate cortex: Evaluation of the four‐region neurobiological model , 2009, Human brain mapping.

[130]  H. Axer,et al.  Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy , 2000, Journal of Neuroscience Methods.