Composition and Bandgap‐Graded Semiconductor Alloy Nanowires

Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad‐band light emitting diodes (LEDs) and high‐efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi‐terminal on‐nanowire photodetectors, full‐spectrum solar cells, and white‐light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.

[1]  C. Ning,et al.  High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1-xS nanowires on a single substrate: a design study. , 2011, Optics express.

[2]  M. Jo,et al.  On-nanowire band-graded Si:Ge photodetectors , 2011, 2011 IEEE Nanotechnology Materials and Devices Conference.

[3]  L. Tong,et al.  Spatial bandgap engineering along single alloy nanowires. , 2011, Journal of the American Chemical Society.

[4]  Yiping Zhao,et al.  Engineering a Well-Aligned Composition-Graded CuSi Nanorod Array by an Oblique Angle Codeposition Technique , 2010 .

[5]  Charles M. Lieber,et al.  Assembly and integration of semiconductor nanowires for functional nanosystems , 2010 .

[6]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[7]  Yiping Zhao,et al.  The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures , 2010 .

[8]  Yong-Jun Cho,et al.  Diameter-dependent internal gain in ohmic Ge nanowire photodetectors. , 2010, Nano letters.

[9]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[10]  C. Ning,et al.  Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. , 2010, ACS nano.

[11]  N. Tanaka,et al.  Junctions in axial III-V heterostructure nanowires obtained via an interchange of group III elements. , 2009, Nano letters.

[12]  C. Ning,et al.  Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. , 2009, Journal of the American Chemical Society.

[13]  C. Chang-Hasnain,et al.  Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.

[14]  Kwanyong Seo,et al.  Composition-tuned Co(n)Si nanowires: location-selective simultaneous growth along temperature gradient. , 2009, ACS nano.

[15]  U. Gösele,et al.  Enhanced electrical properties of nominally undoped Si/SiGe heterostructure nanowires grown by molecular beam epitaxy , 2009, Microelectron. J..

[16]  Bodo Fuhrmann,et al.  Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water , 2009 .

[17]  Ruibin Liu,et al.  Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. , 2009, Nano letters.

[18]  K. Dick,et al.  Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires , 2009 .

[19]  Wei Lu,et al.  Nanowire Transistor Performance Limits and Applications , 2008, IEEE Transactions on Electron Devices.

[20]  R. Agarwal,et al.  Heterointerfaces in semiconductor nanowires. , 2008, Small.

[21]  Jay P. Giblin,et al.  Solution-based II-VI core/shell nanowire heterostructures. , 2008, Journal of the American Chemical Society.

[22]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[23]  M. Jo,et al.  Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si1−xGex nanowires , 2008 .

[24]  Yiping Zhao,et al.  Embedding Ag Nanoparticles into MgF2 Nanorod Arrays , 2008 .

[25]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[26]  Yiping Zhao,et al.  The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition , 2008 .

[27]  G. Fei,et al.  Tunable and Predetermined Bandgap Emissions in Alloyed ZnSxSe1–x Nanowires , 2007 .

[28]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[29]  Yujia Zeng,et al.  Rational synthesis and tunable optical properties of quasialigned Zn1−xMgxO nanorods , 2007 .

[30]  Hee-Sung Moon,et al.  Spontaneous Chemical Vapor Growth of NiSi Nanowires and Their Metallic Properties , 2007 .

[31]  Ray R. LaPierre,et al.  GaP/GaAsP/GaP core–multishell nanowire heterostructures on (111) silicon , 2007 .

[32]  S. T. Lee,et al.  Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons , 2007 .

[33]  A. Pan,et al.  Color-changeable optical transport through Se-doped CdS 1D nanostructures. , 2007, Nano letters.

[34]  Moon-Ho Jo,et al.  Fabrication of Si1−xGex alloy nanowire field-effect transistors , 2007 .

[35]  M. Brett,et al.  Birefringence enhancement in annealed TiO2 thin films , 2007 .

[36]  Bongsoo Kim,et al.  Phase-controlled growth of metastable Fe5Si3 nanowires by a vapor transport method. , 2007, Journal of the American Chemical Society.

[37]  Shui-Tong Lee,et al.  Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons , 2007 .

[38]  Kwanyong Seo,et al.  Magnetic properties of single-crystalline CoSi nanowires. , 2007, Nano letters.

[39]  A. Dong,et al.  Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. , 2007, Nano letters.

[40]  Hongkun Park,et al.  Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures. , 2007, Journal of the American Chemical Society.

[41]  O. Breitenstein,et al.  Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy , 2007 .

[42]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[43]  Jianwei Sun,et al.  Solution-liquid-solid growth of semiconductor nanowires. , 2006, Inorganic chemistry.

[44]  Hsin-Ming Cheng,et al.  Band gap engineering and stimulated emission of ZnMgO nanowires , 2006 .

[45]  Yit‐Tsong Chen,et al.  Photoluminescence and Raman scattering from catalytically grown Zn(x)Cd(1-x)Se alloy nanowires. , 2006, The journal of physical chemistry. B.

[46]  M. Jo,et al.  Shape-controlled growth of single-crystalline Ge nanostructures , 2006 .

[47]  H. Gotoh,et al.  Multi-Quantum Structures of GaAs/AlGaAs Free-Standing Nanowires , 2006 .

[48]  Mahendra K. Sunkara,et al.  Near-infrared semiconductor subwavelength-wire lasers , 2006 .

[49]  U. Gösele,et al.  Growth phenomena of Si and Si/Ge nanowires on Si (1 1 1) by molecular beam epitaxy , 2006 .

[50]  A. Pan,et al.  Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons , 2006, Nanotechnology.

[51]  L. Samuelson,et al.  InAs1-xPx nanowires for device engineering. , 2006, Nano letters.

[52]  Peidong Yang,et al.  Polarized Raman confocal microscopy of single gallium nitride nanowires. , 2005, Journal of the American Chemical Society.

[53]  Youngjin Choi,et al.  Structural and optical properties of CdSxSe1-x nanowires , 2005 .

[54]  A. Pan,et al.  Color-tunable photoluminescence of alloyed CdS(x)Se(1-x) nanobelts. , 2005, Journal of the American Chemical Society.

[55]  C. Shan,et al.  ZnxCd1−xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition , 2005 .

[56]  Yu Huang,et al.  Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires , 2005 .

[57]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[58]  Donald J. Sirbuly,et al.  Optical routing and sensing with nanowire assemblies , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Lars Samuelson,et al.  Epitaxially grown GaP/GaAs1−xPx/GaP double heterostructure nanowires for optical applications , 2005 .

[60]  M. Grundmann,et al.  MgxZn1−xO(0⩽x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition , 2005 .

[61]  Charles M. Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2004, Nano letters.

[62]  V. Protasenko,et al.  Solution-Based Straight and Branched CdTe Nanowires , 2004 .

[63]  C. Ning,et al.  Modal gain in a semiconductor nanowire laser with anisotropic bandstructure , 2004, IEEE Journal of Quantum Electronics.

[64]  C. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[65]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[67]  C. Ning,et al.  Far-field emission of a semiconductor nanowire laser. , 2004, Optics letters.

[68]  Shui-Tong Lee,et al.  Room-temperature single nanoribbon lasers , 2004 .

[69]  Lin-Wang Wang,et al.  Cadmium selenide quantum wires and the transition from 3D to 2D confinement. , 2003, Journal of the American Chemical Society.

[70]  Toh-Ming Lu,et al.  Scaling during shadowing growth of isolated nanocolumns , 2003 .

[71]  Cun-Zheng Ning,et al.  Reflection of guided modes in a semiconductor nanowire laser , 2003 .

[72]  Lin-Wang Wang,et al.  Two- versus three-dimensional quantum confinement in indium phosphide wires and dots , 2003, Nature materials.

[73]  W. Buhro,et al.  Solution–Liquid–Solid Growth of Soluble GaAs Nanowires , 2003 .

[74]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[75]  A. Salem Structure, refractive-index dispersion and the optical absorption edge of chemically deposited ZnxCd(1-x)S thin films , 2002 .

[76]  Peidong Yang,et al.  Inorganic Semiconductor Nanowires , 2002 .

[77]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[78]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[79]  A. Zunger,et al.  Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization. , 2001, Physical review letters.

[80]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[81]  S. Takeoka,et al.  Photoluminescence from Si 1 − x Ge x alloy nanocrystals , 2000 .

[82]  Federico Capasso,et al.  A multiwavelength semiconductor laser , 1998, Nature.

[83]  Theodore D. Moustakas,et al.  Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy , 1998 .

[84]  Lloyd L. Chase,et al.  Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size , 1998 .

[85]  J. Herrero,et al.  Dependence of Electro‐optical Properties on the Deposition Conditions of Chemical Bath Deposited CdS Thin Films , 1997 .

[86]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[87]  D. R. Reddy,et al.  Structural and bandgap studies of ZnSxCdSe1-x thin films , 1994 .

[88]  Friedman,et al.  Dimensions of luminescent oxidized and porous silicon structures. , 1994, Physical review letters.

[89]  Ming-Fu Li,et al.  EMPIRICAL PSEUDOPOTENTIAL BAND-STRUCTURE CALCULATION FOR ZN1-XCDXSYSE1-Y QUATERNARY ALLOY , 1993 .

[90]  Burke,et al.  Raman scattering in germanium-silicon alloys under hydrostatic pressure. , 1993, Physical review. B, Condensed matter.

[91]  T. Mahalingam,et al.  Characterization of electrodeposited zinc sulphide thin films , 1992 .

[92]  H. Ogawa,et al.  Quantum size effects on photoluminescence in ultrafine Si particles , 1990 .

[93]  R. Nuzzo,et al.  Reactivity of intermetallic thin films formed by the surface mediated decomposition of main group organometallic compounds , 1984 .

[94]  W. H. Bloss,et al.  Dispersive concentrating systems based on transmission phase holograms for solar applications. , 1982, Applied optics.

[95]  J E Ludman,et al.  Holographic solar concentrator. , 1982, Applied optics.

[96]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[97]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[98]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[99]  L. Libioulle,et al.  VERY SHARP PLATINUM TIPS FOR SCANNING TUNNELING MICROSCOPY , 1995 .