Positive semidefinite diagonal minus tail forms are sums of squares

By a diagonal minus tail form (of even degree) we understand a real homogeneous polynomial F(x1, . . . , xn) = F(x) = D(x) − T(x), where the diagonal part D(x) is a sum of terms of the form $${b_i x_i^{2d}}$$ with all bi ≥ 0 and the tail T(x) a sum of terms $${a_{i_1i_2\cdots i_n}x_1^{i_1}\cdots x_n^{i_n}}$$ with $${a_{i_1i_2\cdots i_n} > 0}$$ and at least two iν ≥ 1. We show that an arbitrary change of the signs of the tail terms of a positive semidefinite diagonal minus tail form will result in a sum of squares of polynomials. We also give an easily tested sufficient condition for a polynomial to be a sum of squares of polynomials (sos) and show that the class of polynomials passing this test is wider than the class passing Lasserre’s recent conditions. Another sufficient condition for a polynomial to be sos, like Lasserre’s piecewise linear in its coefficients, is also given.

[1]  Man-Duen Choi,et al.  Extremal positive semidefinite forms , 1977 .

[2]  B. Reznick Forms derived from the arithmetic-geometric inequality , 1989 .

[3]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[4]  B. Reznick A quantitative version of Hurwitz' theorem on the arithmetic-geometric inequality. , 1987 .

[5]  S. Sullivant,et al.  Emerging applications of algebraic geometry , 2009 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  Bruce Pourciau Modern Multiplier Rules , 1980 .

[8]  Bruce Reznick,et al.  Sums of squares of real polynomials , 1995 .

[9]  M. Marshall Positive polynomials and sums of squares , 2008 .

[10]  Adolf Hurwitz Über den Vergleich des arithmetischen und des geometrischen Mittels: Journal für die reine und angewandte Mathematik, Bd. 108, 1891, S. 266–268 , 1963 .

[11]  Jean B. Lasserre,et al.  SOS approximations of nonnegative polynomials via simple high degree perturbations , 2005 .

[12]  D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[13]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[14]  A. Hurwitz Ueber den Vergleich des arithmetischen und des geometrischen Mittels. , 1891 .

[15]  Jean B. Lasserre Sufficient conditions for a real polynomial to be a sum of squares , 2006 .

[16]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .