Space-selective crystallization of glass induced by femtosecond laser irradiation

Abstract Transparent glasses imbedded with functional nanocrystals have attracted considerable interest and been studied widely in the past several decades, due to their applications in optical devices, such as optical amplifiers, nonlinear optical devices, optical storage, 3D displays, etc. Femtosecond (fs) laser irradiation induced crystallization of glass has been proved to be a powerful tool to realize the space-selective precipitation of various nanocrystals inside glasses. In this review, we highlight our recent research achievements on the fs laser induced precipitation of nanocrystals inside glasses, including nonlinear optical crystal, upconversion luminescence crystal, high refractive index crystal, and metal nanoparticles. These studies not only help to understand the interaction process between fs laser and glassy materials, but also have potential applications in the fabrication of micro-optical devices.

[1]  Paul B. Moore,et al.  Fresnoite: Unusal Titanium Coordination , 1967, Science.

[2]  P. Prasad,et al.  Observation of stimulated emission by direct three-photon excitation , 2002, Nature.

[3]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[4]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[5]  T. Komatsu,et al.  Technique for writing of nonlinear optical single-crystal lines in glass , 2003 .

[6]  J. Si,et al.  Space-selective precipitation of metal nanoparticles inside glasses , 2002 .

[7]  A. Kaminskiĭ,et al.  Laser Crystals: Their Physics and Properties , 1990 .

[8]  J. Qiu,et al.  Greatly enhanced effect of silver on femtosecond laser-induced precipitation of nonlinear optical crystals in glasses. , 2009, Optics letters.

[9]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[10]  Jinhai Si,et al.  Manipulation of gold nanoparticles inside transparent materials. , 2004, Angewandte Chemie.

[11]  F. He,et al.  Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation. , 2011, Optics letters.

[12]  T. Mayerhöfer,et al.  Single-crystal IR spectroscopic investigation on fresnoite, Sr-fresnoite and Ge-fresnoite , 2001 .

[13]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[14]  W. Plieth,et al.  Electrochemical synthesis and In situ Raman spectroscopy of thin films of Titanium dioxide , 1991 .

[15]  K Miura,et al.  Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. , 2000, Optics letters.

[16]  Tsuneo Mitsuyu,et al.  Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions , 1998 .

[17]  T. Komatsu,et al.  Nonlinear optical crystal-line writing in glass by yttrium aluminum garnet laser irradiation , 2003 .

[18]  E. Economou,et al.  Dichotomous collective proton dynamics in ice , 1998 .

[19]  Guangjun Zhao,et al.  Three-photon-excited upconversion luminescence of Ce(3+): YAP crystal by femtosecond laser irradiation. , 2006, Optics express.

[20]  Boris N. Chichkov,et al.  Direct 3D Patterning of TiO2 Using Femtosecond Laser Pulses , 2007 .

[21]  J. Qiu,et al.  Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses , 2010 .

[22]  Shiliang Qu,et al.  Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser , 2003 .

[23]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[24]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[25]  Tsuneo Mitsuyu,et al.  Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser , 1999 .

[26]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[27]  M. Thorpe,et al.  Raman scattering from phonons in polymorphs of Si and Ge , 1972 .

[28]  T. Komatsu,et al.  Fabrication of TiO2 nanocrystallized glass , 2007 .

[29]  Bin Zhu,et al.  Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser , 2007 .

[30]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[31]  Y. Liu,et al.  Femtosecond laser direct writing of TiO2 crystalline patterns in glass , 2008 .

[32]  J. Qiu,et al.  Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser , 2007 .

[33]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[34]  A. S. Bhalla,et al.  Raman study of fresnoite-type materials: Polarized single crystal, crystalline powders, and glasses , 1993 .

[35]  R. Kanno,et al.  Up-conversion characteristics of Er3+ in transparent oxyfluoride glass–ceramics , 1998 .

[36]  M. Nogami,et al.  Sol-gel preparation of CdSxSe1−x solid solution microcrystal-doped glasses , 1993, Journal of Materials Science.

[37]  K Miura,et al.  Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass. , 1999, Optics letters.

[38]  Geng Lin,et al.  Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses. , 2007, Optics express.

[39]  J. Qiu,et al.  Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass. , 2008, Optics express.

[40]  Jeff Young,et al.  Nonlinear optics in high refractive index contrast periodic structures , 2005 .

[41]  J. Qiu,et al.  Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass. , 2009, Optics letters.