Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments
暂无分享,去创建一个
Peter Goos | Jie Yu | Martina Vandebroek | P. Goos | M. Vandebroek | Jie Yu
[1] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[2] D. Hensher. The valuation of commuter travel time savings for car drivers: evaluating alternative model specifications , 2001 .
[3] Michel Wedel,et al. Heterogeneous Conjoint Choice Designs , 2005 .
[4] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[5] John Geweke,et al. Monte carlo simulation and numerical integration , 1995 .
[6] P. Laycock,et al. Optimum Experimental Designs , 1995 .
[7] John M. Rose,et al. Designing efficient stated choice experiments in the presence of reference alternatives , 2008 .
[8] P. Goos,et al. Models and Optimal Designs for Conjoint Choice Experiments Including a No-Choice Option , 2008 .
[9] M. Bliemer,et al. Approximation of bayesian efficiency in experimental choice designs , 2008 .
[10] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[11] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[12] A. Daly,et al. On the performance of the shuffled Halton sequence in the estimation of discrete choice models , 2003 .
[13] David A. Hensher,et al. Measurement of the Valuation of Travel Time Savings , 2000 .
[14] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[15] Tuffin Bruno. On the use of low discrepancy sequences in Monte Carlo methods , 1996 .
[16] Michel Wedel,et al. Profile Construction in Experimental Choice Designs for Mixed Logit Models , 2002 .
[17] S. Shapiro,et al. THE JOHNSON SYSTEM: SELECTION AND PARAMETER ESTIMATION , 1980 .
[18] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[19] David M. Steinberg,et al. Fast Computation of Designs Robust to Parameter Uncertainty for Nonlinear Settings , 2009, Technometrics.
[20] Jie Yu,et al. Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity , 2009, Mark. Sci..
[21] Hovav A. Dror,et al. Robust Experimental Design for Multivariate Generalized Linear Models , 2006, Technometrics.
[22] John M. Rose,et al. Applied Choice Analysis: A Primer , 2005 .
[23] Jie Yu,et al. Model-Robust Design of Conjoint Choice Experiments , 2008, Commun. Stat. Simul. Comput..
[24] C. Bhat. Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model , 2001 .
[25] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[26] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[27] M. Bliemer,et al. Construction of experimental designs for mixed logit models allowing for correlation across choice observations , 2010 .
[28] J. Monahan,et al. Spherical-Radial Integration Rules for Bayesian Computation , 1997 .
[29] Juan de Dios Ortúzar,et al. Estimating demand for a cycle-way network , 2000 .
[30] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[31] K. Train. Discrete Choice Methods with Simulation , 2003 .
[32] K. Judd. Numerical methods in economics , 1998 .
[33] C. R. Cassity,et al. Abcissas, coefficients, and error term for the generalized Gauss-Laguerre quadrature formula using the zero ordinate , 1965 .
[34] C. Bhat,et al. Simulation Estimation of Mixed Discrete Choice Models with the Use of Randomized Quasi–Monte Carlo Sequences , 2005 .
[35] Chandra R. Bhat,et al. A multi-level cross-classified model for discrete response variables , 2000 .
[36] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[37] Zsolt Sándor,et al. Quasi-random simulation of discrete choice models , 2004 .
[38] P. András,et al. Alternative sampling methods for estimating multivariate normal probabilities , 2003 .
[39] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .
[40] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[41] John M. Rose,et al. Efficient stated choice experiments for estimating nested logit models , 2009 .
[42] D. McFadden. Conditional logit analysis of qualitative choice behavior , 1972 .
[43] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[44] Joffre Swait,et al. Stated Choice Methods: Relaxing the IID assumption – introducing variants of the MNL model , 2000 .
[45] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[46] K. Train. Halton Sequences for Mixed Logit , 2000 .
[47] Peter Goos,et al. An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs , 2009 .
[48] Ken Seng Tan,et al. Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .
[49] Peter Goos,et al. A Comparison of Criteria to Design Efficient Choice Experiments , 2006 .
[50] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[51] P. Zarembka. Frontiers in econometrics , 1973 .
[52] R. Rudel,et al. The Value of Quality Attributes in Freight Transport: Evidence from an SP-Experiment in Switzerland , 2008 .
[53] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[54] E. Braaten,et al. An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .
[55] C. Bhat. Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences , 2003 .
[56] Christiane Lemieux,et al. Searching for extensible Korobov rules , 2007, J. Complex..
[57] Bennett L. Fox,et al. Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.
[58] Joel Huber,et al. The Importance of Utility Balance in Efficient Choice Designs , 1996 .
[59] Moshe Ben-Akiva,et al. Recent Developments in Transport Modelling , 2008 .
[60] Stephane Hess,et al. On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice , 2006 .
[61] M. Wedel,et al. Designing Conjoint Choice Experiments Using Managers' Prior Beliefs , 2001 .