Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments

The semi-Bayesian approach for constructing efficient stated choice designs requires the evaluation of the design selection criterion value over numerous draws taken from the prior parameter distribution assumed when generating the design. The semi-Bayesian D-criterion value of a design is then calculated as the average value of the D-errors over all the draws taken. The traditional way to take draws from a distribution is to use the Pseudo-Monte Carlo approach. However, other sampling approaches are available as well. Examples are Quasi-Monte Carlo approaches using Halton sequences, Faure sequences, modified Latin hypercube sampling and extensible shifted lattice points, a Gauss-Hermite quadrature approach and a method using spherical-radial transformations. Not much is known in general about which sampling scheme is most efficient for calculating semi-Bayesian D-errors when constructing efficient stated choice designs. In this study, we compare the performance of these approaches under various scenarios and identify the most efficient sampling scheme for each situation. The method based on a spherical-radial transformation is shown to outperform the other methods when small numbers of draws are used.

[1]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[2]  D. Hensher The valuation of commuter travel time savings for car drivers: evaluating alternative model specifications , 2001 .

[3]  Michel Wedel,et al.  Heterogeneous Conjoint Choice Designs , 2005 .

[4]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[5]  John Geweke,et al.  Monte carlo simulation and numerical integration , 1995 .

[6]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[7]  John M. Rose,et al.  Designing efficient stated choice experiments in the presence of reference alternatives , 2008 .

[8]  P. Goos,et al.  Models and Optimal Designs for Conjoint Choice Experiments Including a No-Choice Option , 2008 .

[9]  M. Bliemer,et al.  Approximation of bayesian efficiency in experimental choice designs , 2008 .

[10]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[11]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[12]  A. Daly,et al.  On the performance of the shuffled Halton sequence in the estimation of discrete choice models , 2003 .

[13]  David A. Hensher,et al.  Measurement of the Valuation of Travel Time Savings , 2000 .

[14]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[15]  Tuffin Bruno On the use of low discrepancy sequences in Monte Carlo methods , 1996 .

[16]  Michel Wedel,et al.  Profile Construction in Experimental Choice Designs for Mixed Logit Models , 2002 .

[17]  S. Shapiro,et al.  THE JOHNSON SYSTEM: SELECTION AND PARAMETER ESTIMATION , 1980 .

[18]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[19]  David M. Steinberg,et al.  Fast Computation of Designs Robust to Parameter Uncertainty for Nonlinear Settings , 2009, Technometrics.

[20]  Jie Yu,et al.  Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity , 2009, Mark. Sci..

[21]  Hovav A. Dror,et al.  Robust Experimental Design for Multivariate Generalized Linear Models , 2006, Technometrics.

[22]  John M. Rose,et al.  Applied Choice Analysis: A Primer , 2005 .

[23]  Jie Yu,et al.  Model-Robust Design of Conjoint Choice Experiments , 2008, Commun. Stat. Simul. Comput..

[24]  C. Bhat Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model , 2001 .

[25]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[26]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[27]  M. Bliemer,et al.  Construction of experimental designs for mixed logit models allowing for correlation across choice observations , 2010 .

[28]  J. Monahan,et al.  Spherical-Radial Integration Rules for Bayesian Computation , 1997 .

[29]  Juan de Dios Ortúzar,et al.  Estimating demand for a cycle-way network , 2000 .

[30]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[31]  K. Train Discrete Choice Methods with Simulation , 2003 .

[32]  K. Judd Numerical methods in economics , 1998 .

[33]  C. R. Cassity,et al.  Abcissas, coefficients, and error term for the generalized Gauss-Laguerre quadrature formula using the zero ordinate , 1965 .

[34]  C. Bhat,et al.  Simulation Estimation of Mixed Discrete Choice Models with the Use of Randomized Quasi–Monte Carlo Sequences , 2005 .

[35]  Chandra R. Bhat,et al.  A multi-level cross-classified model for discrete response variables , 2000 .

[36]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[37]  Zsolt Sándor,et al.  Quasi-random simulation of discrete choice models , 2004 .

[38]  P. András,et al.  Alternative sampling methods for estimating multivariate normal probabilities , 2003 .

[39]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[40]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[41]  John M. Rose,et al.  Efficient stated choice experiments for estimating nested logit models , 2009 .

[42]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[43]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[44]  Joffre Swait,et al.  Stated Choice Methods: Relaxing the IID assumption – introducing variants of the MNL model , 2000 .

[45]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[46]  K. Train Halton Sequences for Mixed Logit , 2000 .

[47]  Peter Goos,et al.  An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs , 2009 .

[48]  Ken Seng Tan,et al.  Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .

[49]  Peter Goos,et al.  A Comparison of Criteria to Design Efficient Choice Experiments , 2006 .

[50]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[51]  P. Zarembka Frontiers in econometrics , 1973 .

[52]  R. Rudel,et al.  The Value of Quality Attributes in Freight Transport: Evidence from an SP-Experiment in Switzerland , 2008 .

[53]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[54]  E. Braaten,et al.  An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .

[55]  C. Bhat Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences , 2003 .

[56]  Christiane Lemieux,et al.  Searching for extensible Korobov rules , 2007, J. Complex..

[57]  Bennett L. Fox,et al.  Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.

[58]  Joel Huber,et al.  The Importance of Utility Balance in Efficient Choice Designs , 1996 .

[59]  Moshe Ben-Akiva,et al.  Recent Developments in Transport Modelling , 2008 .

[60]  Stephane Hess,et al.  On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice , 2006 .

[61]  M. Wedel,et al.  Designing Conjoint Choice Experiments Using Managers' Prior Beliefs , 2001 .