An Algebraic Approach to Physical-Layer Network Coding

The problem of designing physical-layer network coding (PNC) schemes via nested lattices is considered. Building on the compute-and-forward (C&F) relaying strategy of Nazer and Gastpar, who demonstrated its asymptotic gain using information-theoretic tools, an algebraic approach is taken to show its potential in practical, nonasymptotic, settings. A general framework is developed for studying nested-lattice-based PNC schemes-called lattice network coding (LNC) schemes for short-by making a direct connection between C&F and module theory. In particular, a generic LNC scheme is presented that makes no assumptions on the underlying nested lattice code. C&F is reinterpreted in this framework, and several generalized constructions of LNC schemes are given. The generic LNC scheme naturally leads to a linear network coding channel over modules, based on which noncoherent network coding can be achieved. Next, performance/complexity tradeoffs of LNC schemes are studied, with a particular focus on hypercube-shaped LNC schemes. The error probability of this class of LNC schemes is largely determined by the minimum intercoset distances of the underlying nested lattice code. Several illustrative hypercube-shaped LNC schemes are designed based on Constructions A and D, showing that nominal coding gains of 3 to 7.5 dB can be obtained with reasonable decoding complexity. Finally, the possibility of decoding multiple linear combinations is considered and related to the shortest independent vectors problem. A notion of dominant solutions is developed together with a suitable lattice-reduction-based algorithm.

[1]  Frank R. Kschischang,et al.  Lattice network coding via signal codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[2]  Gregory W. Wornell,et al.  Lattice-reduction-aided detectors for MIMO communication systems , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[3]  Henry D. Pfister,et al.  Iterative collision resolution for slotted ALOHA: An optimal uncoordinated transmission policy , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[4]  Sachin Katti,et al.  Embracing wireless interference: analog network coding , 2007, SIGCOMM.

[5]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[6]  B. R. McDonald Enumeration of classes of row equivalent matrices over a principal ideal domain modulo $p\sp{n}$ , 1970 .

[7]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[8]  Petar Popovski,et al.  Physical Network Coding in Two-Way Wireless Relay Channels , 2007, 2007 IEEE International Conference on Communications.

[9]  Krishna Narayanan,et al.  Power allocation strategies and lattice based coding schemes for bi-directional relaying , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  Jean-Claude Belfiore Lattice codes for the compute-and-forward protocol: The flatness factor , 2011, 2011 IEEE Information Theory Workshop.

[11]  Bernard R. McDonald,et al.  Linear Algebra over Commutative Rings , 1984 .

[12]  Wai Ho Mow,et al.  Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection , 2009, IEEE Transactions on Signal Processing.

[13]  Meir Feder,et al.  Signal codes , 2008, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[14]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[15]  Daniel Panario,et al.  Turbo Lattices: Construction and Performance Analysis , 2011, ArXiv.

[16]  Michael Gastpar,et al.  Practical code design for compute-and-forward , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[17]  A. A. Nechaev,et al.  Finite Rings with Applications , 2008 .

[18]  Suhas N. Diggavi,et al.  On the capacity of non-coherent network coding , 2009, 2009 IEEE International Symposium on Information Theory.

[19]  Maria Angeles Vázquez-Castro,et al.  Physical-layer network coding based on integer-forcing precoded compute and forward , 2012, 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[20]  Jean-Claude Belfiore,et al.  Managing interference through space-time codes, lattice reduction and network coding , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[21]  William C. Brown,et al.  Matrices over commutative rings , 1993 .

[22]  Huguette Napias,et al.  A generalization of the LLL-algorithm over euclidean rings or orders , 1996 .

[23]  Michael Gastpar,et al.  Integer-Forcing architectures for MIMO: Distributed implementation and SIC , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[24]  Michael Gastpar,et al.  MIMO compute-and-forward , 2009, 2009 IEEE International Symposium on Information Theory.

[25]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[26]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[27]  Toshiaki Koike-Akino,et al.  Optimized constellations for two-way wireless relaying with physical network coding , 2009, IEEE Journal on Selected Areas in Communications.

[28]  Babak Hassibi,et al.  How much training is needed in multiple-antenna wireless links? , 2003, IEEE Trans. Inf. Theory.

[29]  G. David Forney,et al.  On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener , 2004, ArXiv.

[30]  Randall Dougherty,et al.  Insufficiency of linear coding in network information flow , 2005, IEEE Transactions on Information Theory.

[31]  Bobak Nazer Successive compute-and-forward , 2012 .

[32]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[33]  Hans-Andrea Loeliger Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[34]  Meir Feder,et al.  On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.

[35]  Meir Feder,et al.  Shaping methods for low-density lattice codes , 2009, 2009 IEEE Information Theory Workshop.

[36]  B. R. McDonald Finite Rings With Identity , 1974 .

[37]  N. J. A. Sloane,et al.  A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.

[38]  Soung Chang Liew,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[39]  Meir Feder,et al.  Low-Density Lattice Codes , 2007, IEEE Transactions on Information Theory.

[40]  Thomas Honold,et al.  Linear Codes over Finite Chain Rings , 1999, Electron. J. Comb..

[41]  Sae-Young Chung,et al.  Noisy Network Coding , 2010, IEEE Transactions on Information Theory.

[42]  Meir Feder,et al.  Signal Codes: Convolutional Lattice Codes , 2011, IEEE Transactions on Information Theory.

[43]  Amir H. Banihashemi,et al.  Low-Density Parity-Check Lattices: Construction and Decoding Analysis , 2006, IEEE Transactions on Information Theory.

[44]  Garrett Birkhoff,et al.  Subgroups of Abelian Groups , 1935 .

[45]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[46]  B. Sundar Rajan,et al.  An efficient algorithm for constructing minimal trellises for codes over finite abelian groups , 1996, IEEE Trans. Inf. Theory.

[47]  Krishna R. Narayanan,et al.  Concatenated Signal Codes with Applications to Compute and Forward , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[48]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[49]  Johannes Blömer,et al.  Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices , 2000, ICALP.

[50]  Urs Niesen,et al.  The Degrees of Freedom of Compute-and-Forward , 2011, IEEE Transactions on Information Theory.

[51]  Damien Stehlé,et al.  Low-dimensional lattice basis reduction revisited , 2004, TALG.

[52]  Brigitte Vallée,et al.  Gauss' Algorithm Revisited , 1991, J. Algorithms.

[53]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-way Relay Channel to within 1/2 Bit , 2009, ArXiv.

[54]  G. David Forney,et al.  Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..

[55]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[56]  Krishna R. Narayanan,et al.  Multilevel coding schemes for compute-and-forward , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[57]  T. Ho,et al.  On Linear Network Coding , 2010 .

[58]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[59]  Sae-Young Chung,et al.  Capacity Bounds for Two-Way Relay Channels , 2008, 2008 IEEE International Zurich Seminar on Communications.

[60]  Bartolomeu F. Uchôa Filho,et al.  On the Capacity of Multiplicative Finite-Field Matrix Channels , 2011, IEEE Transactions on Information Theory.

[61]  Michael Gastpar,et al.  Reliable Physical Layer Network Coding , 2011, Proceedings of the IEEE.

[62]  Michael Gastpar,et al.  Computing over Multiple-Access Channels with Connections to Wireless Network Coding , 2006, 2006 IEEE International Symposium on Information Theory.

[63]  Toshiaki Koike-Akino,et al.  Coded Bidirectional Relaying in Wireless Networks , 2009 .

[64]  Aydin Sezgin,et al.  Information Theory Capacity of the two-way relay channel within a constant gap , 2010, Eur. Trans. Telecommun..

[65]  En-Hui Yang,et al.  Linear Operator Channels over Finite Fields , 2010, ArXiv.

[66]  Soung Chang Liew,et al.  Hot topic: physical-layer network coding , 2006, MobiCom '06.

[67]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[68]  Alexandre Proutière,et al.  Asymptotic Stability Region of Slotted Aloha , 2008, IEEE Transactions on Information Theory.

[69]  L. E. Fuller A Canonical Set For Matrices Over a Principal Ideal Ring Modulo m , 1955, Canadian Journal of Mathematics.

[70]  Jean-Claude Belfiore,et al.  The Compute-and-Forward Protocol: Implementation and Practical Aspects , 2011, ArXiv.

[71]  Frank R. Kschischang,et al.  Design criteria for lattice network coding , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[72]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[73]  Uri Erez,et al.  Achieving the gains promised by Integer-Forcing equalization with binary codes , 2010, 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel.

[74]  Alexander Sprintson,et al.  Joint Physical Layer Coding and Network Coding for Bidirectional Relaying , 2008, IEEE Transactions on Information Theory.

[75]  Petar Popovski,et al.  The Anti-Packets Can Increase the Achievable Throughput of a Wireless Multi-Hop Network , 2006, 2006 IEEE International Conference on Communications.

[76]  Frank R. Kschischang,et al.  An algebraic approach to physical-layer network coding , 2010, ISIT.

[77]  Frank R. Kschischang,et al.  Communication Over Finite-Field Matrix Channels , 2008, IEEE Transactions on Information Theory.

[78]  N. J. A. Sloane,et al.  An improvement to the Minkowski-Hiawka bound for packing superballs , 1987 .

[79]  Suhas N. Diggavi,et al.  Approximately achieving Gaussian relay network capacity with lattice codes , 2010, 2010 IEEE International Symposium on Information Theory.

[80]  Lang Tong,et al.  Stability and delay of finite-user slotted ALOHA with multipacket reception , 2005, IEEE Transactions on Information Theory.

[81]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[82]  Michael Gastpar,et al.  Compute-and-Forward: Harnessing Interference Through Structured Codes , 2009, IEEE Transactions on Information Theory.

[83]  Justin Dauwels,et al.  Power-constrained communications using LDLC lattices , 2009, 2009 IEEE International Symposium on Information Theory.

[84]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[85]  Yu-Chih Huang,et al.  Lattices Over Eisenstein Integers for Compute-and-Forward , 2014, IEEE Transactions on Information Theory.

[86]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[87]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[88]  Frank R. Kschischang,et al.  Lattice network coding over finite rings , 2011, 2011 12th Canadian Workshop on Information Theory.