Chromatic Numbers of Stable Kneser Hypergraphs via Topological Tverberg-Type Theorems

Kneser’s 1955 conjecture—proven by Lovász in 1978—asserts that in any partition of the $k$-subsets of $\{1, 2, \dots , n\}$ into $n-2k+1$ parts, one part contains two disjoint sets. Schrijver showed that one can restrict to significantly fewer $k$-sets and still observe the same intersection pattern. Alon, Frankl, and Lovász proved a different generalization of Kneser’s conjecture for $r$ pairwise disjoint sets. Dolnikov generalized Lovász’ result to arbitrary set systems, while Kříž did the same for the $r$-fold extension of Kneser’s conjecture. Here we prove a common generalization of all of these results. Moreover, we prove additional strengthenings by determining the chromatic number of certain sparse stable Kneser hypergraphs, and further develop a general approach to establishing lower bounds for chromatic numbers of hypergraphs using a combination of methods from equivariant topology and intersection results for convex hulls of points in Euclidean space.

[1]  Karanbir S. Sarkaria,et al.  A generalized kneser conjecture , 1990, J. Comb. Theory, Ser. B.

[2]  STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODÝM PROPERTY , 2008 .

[3]  Stephan Hell,et al.  Tverberg's theorem with constraints , 2007, J. Comb. Theory, Ser. A.

[4]  V. Dol'nikov,et al.  A certain combinatorial inequality , 1988 .

[5]  Peng-An Chen,et al.  On the Multichromatic Number of s‐Stable Kneser Graphs , 2015, J. Graph Theory.

[6]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[7]  Alexander Engström,et al.  A local criterion for Tverberg graphs , 2009, Comb..

[8]  A. Volovikov,et al.  On a topological generalization of the Tverberg theorem , 1996 .

[9]  Meysam Alishahi Colorful Subhypergraphs in Uniform Hypergraphs , 2017, Electron. J. Comb..

[10]  K. S. Sarkaria Tverberg partitions and Borsuk–Ulam theorems , 2000 .

[11]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[12]  Pavle V. M. Blagojevi'c,et al.  Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.

[13]  K. S. Sarkaria A generalized van Kampen-Flores theorem , 1991 .

[14]  Uli Wagner,et al.  Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems , 2015, ArXiv.

[15]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[16]  I. Kríz A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .

[17]  Florian Frick,et al.  Counterexamples to the topological Tverberg conjecture , 2015 .

[18]  Florian Frick,et al.  Intersection patterns of finite sets and of convex sets , 2016, 1607.01003.

[19]  Imre Bárány,et al.  On a Topological Generalization of a Theorem of Tverberg , 1981 .

[20]  Jiri Matousek,et al.  Topological lower bounds for the chromatic number: A hierarchy , 2003 .

[21]  Igor Kriz A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1999 .

[22]  Gabriel Nivasch,et al.  Classifying unavoidable Tverberg partitions , 2016, Journal of Computational Geometry.

[23]  Noga Alon,et al.  The chromatic number of kneser hypergraphs , 1986 .

[24]  A. Schrijver,et al.  Vertex-critical subgraphs of Kneser-graphs , 1978 .

[25]  Günter M. Ziegler,et al.  On generalized Kneser hypergraph colorings , 2007, J. Comb. Theory, Ser. A.

[26]  N. Alon,et al.  Stable Kneser hypergraphs and ideals in $\mathbb {N}$ with the Nikodym property , 2008 .

[27]  P. Os,et al.  Problems and Results in Combinatorial Analysis , 1978 .

[28]  I. Bárány,et al.  On a common generalization of Borsuk's and Radon's theorem , 1979 .

[29]  P. Erdos Problems and Results in Combinatorial Analysis , 2022 .

[30]  Frédéric Meunier,et al.  The chromatic number of almost stable Kneser hypergraphs , 2009, J. Comb. Theory, Ser. A.

[31]  Micha A. Perles,et al.  Tverberg Partitions of Points on the Moment Curve , 2017, Discret. Comput. Geom..

[32]  Rade T. Zivaljevic,et al.  Note on a conjecture of sierksma , 1993, Discret. Comput. Geom..

[33]  Hossein Hajiabolhassan,et al.  On the chromatic number of general Kneser hypergraphs , 2013, J. Comb. Theory B.

[34]  J. Jonsson ON THE CHROMATIC NUMBER OF GENERALIZED STABLE KNESER GRAPHS JAKOB , 2012 .

[35]  Florian Frick,et al.  Tverberg plus constraints , 2014, 1401.0690.

[36]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[37]  Murad Ozaydin,et al.  Equivariant Maps for the Symmetric Group , 1987 .

[38]  Hom complexes and hypergraph colorings , 2013 .

[39]  Florian Frick,et al.  Barycenters of polytope skeleta and counterexamples to the Topological Tverberg Conjecture, via constraints , 2015, Journal of the European Mathematical Society.

[40]  G. Ziegler,et al.  Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.