Chromatic Numbers of Stable Kneser Hypergraphs via Topological Tverberg-Type Theorems
暂无分享,去创建一个
[1] Karanbir S. Sarkaria,et al. A generalized kneser conjecture , 1990, J. Comb. Theory, Ser. B.
[2] STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODÝM PROPERTY , 2008 .
[3] Stephan Hell,et al. Tverberg's theorem with constraints , 2007, J. Comb. Theory, Ser. A.
[4] V. Dol'nikov,et al. A certain combinatorial inequality , 1988 .
[5] Peng-An Chen,et al. On the Multichromatic Number of s‐Stable Kneser Graphs , 2015, J. Graph Theory.
[6] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[7] Alexander Engström,et al. A local criterion for Tverberg graphs , 2009, Comb..
[8] A. Volovikov,et al. On a topological generalization of the Tverberg theorem , 1996 .
[9] Meysam Alishahi. Colorful Subhypergraphs in Uniform Hypergraphs , 2017, Electron. J. Comb..
[10] K. S. Sarkaria. Tverberg partitions and Borsuk–Ulam theorems , 2000 .
[11] Imre Bárány,et al. A generalization of carathéodory's theorem , 1982, Discret. Math..
[12] Pavle V. M. Blagojevi'c,et al. Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.
[13] K. S. Sarkaria. A generalized van Kampen-Flores theorem , 1991 .
[14] Uli Wagner,et al. Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems , 2015, ArXiv.
[15] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[16] I. Kríz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .
[17] Florian Frick,et al. Counterexamples to the topological Tverberg conjecture , 2015 .
[18] Florian Frick,et al. Intersection patterns of finite sets and of convex sets , 2016, 1607.01003.
[19] Imre Bárány,et al. On a Topological Generalization of a Theorem of Tverberg , 1981 .
[20] Jiri Matousek,et al. Topological lower bounds for the chromatic number: A hierarchy , 2003 .
[21] Igor Kriz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1999 .
[22] Gabriel Nivasch,et al. Classifying unavoidable Tverberg partitions , 2016, Journal of Computational Geometry.
[23] Noga Alon,et al. The chromatic number of kneser hypergraphs , 1986 .
[24] A. Schrijver,et al. Vertex-critical subgraphs of Kneser-graphs , 1978 .
[25] Günter M. Ziegler,et al. On generalized Kneser hypergraph colorings , 2007, J. Comb. Theory, Ser. A.
[26] N. Alon,et al. Stable Kneser hypergraphs and ideals in $\mathbb {N}$ with the Nikodym property , 2008 .
[27] P. Os,et al. Problems and Results in Combinatorial Analysis , 1978 .
[28] I. Bárány,et al. On a common generalization of Borsuk's and Radon's theorem , 1979 .
[29] P. Erdos. Problems and Results in Combinatorial Analysis , 2022 .
[30] Frédéric Meunier,et al. The chromatic number of almost stable Kneser hypergraphs , 2009, J. Comb. Theory, Ser. A.
[31] Micha A. Perles,et al. Tverberg Partitions of Points on the Moment Curve , 2017, Discret. Comput. Geom..
[32] Rade T. Zivaljevic,et al. Note on a conjecture of sierksma , 1993, Discret. Comput. Geom..
[33] Hossein Hajiabolhassan,et al. On the chromatic number of general Kneser hypergraphs , 2013, J. Comb. Theory B.
[34] J. Jonsson. ON THE CHROMATIC NUMBER OF GENERALIZED STABLE KNESER GRAPHS JAKOB , 2012 .
[35] Florian Frick,et al. Tverberg plus constraints , 2014, 1401.0690.
[36] J. Matousek,et al. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .
[37] Murad Ozaydin,et al. Equivariant Maps for the Symmetric Group , 1987 .
[38] Hom complexes and hypergraph colorings , 2013 .
[39] Florian Frick,et al. Barycenters of polytope skeleta and counterexamples to the Topological Tverberg Conjecture, via constraints , 2015, Journal of the European Mathematical Society.
[40] G. Ziegler,et al. Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.