Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions

Functions characterized by the alternative appelations in the title hereof have application in areas as diverse as heat conduction, probability theory, electronic structure in periodic systems, and hydrology. These functions are regarded as difficult to evaluate and have been given attention by a number of investigators in all these fields. This communication ties together the previously disjoint literature, and presents several new expansions of these functions that are in various parameter ranges computationally more efficient than any of the previously proposed methods of evaluation. A new formula for computation of these functions from nearby tabulated values is also reported. The computational advantages of the new procedures are illustrated with examples.

[1]  G. W. Thomas,et al.  The computation of leaky aquifer functions , 1978 .

[2]  J. G. Fripiat,et al.  Fourier Space for Accurate Ab Initio RHF Band Structure Calculations on Chainlike Systems , 1996 .

[3]  Harris,et al.  Fourier-representation method for electronic structure of chainlike systems: Restricted Hartree-Fock equations and applications to the (H)x chain in a basis of Gaussian functions. , 1985, Physical review. B, Condensed matter.

[4]  N. M. Temme,et al.  The numerical computation of the confluent hypergeometric functionU(a, b, z) , 1983 .

[5]  R. Terras A miller algorithm for an incomplete bessel function , 1981 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  Donald E. Amos Algorithm 556: Exponential Integrals [S13] , 1980, TOMS.

[8]  J. B. Campbell,et al.  On Temme's Algorithm for the Modified Bessel Function of the Third Kind , 1980, TOMS.

[9]  F. Harris Ewald summations in systems with two-dimensional periodicity , 1998 .

[10]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[11]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[12]  M. A. Chaudhry,et al.  Generalized incomplete gamma functions with applications , 1994 .

[13]  Leon M. Hall,et al.  Special Functions , 1998 .

[14]  N. M. Temme,et al.  On the numerical evaluation of the modified bessel function of the third kind , 1975 .

[15]  M. Chaudhrya,et al.  Asymptotics and closed form of a generalized incomplete gamma function , .

[16]  D. Heyes,et al.  Molecular dynamics computer simulation of surface properties of crystalline potassium chloride , 1977 .

[17]  C. E. Jacob,et al.  Non-steady radial flow in an infinite leaky aquifer , 1955 .

[18]  B. Hunt Calculation of the leaky aquifer function , 1977 .

[19]  Hossein Kazemi,et al.  SPE-002156-B - The Interpretation of Interference Tests in Naturally Fractured Reservoirs with Uniform Fracture Distribution , 1969 .

[20]  Donald E. Amos,et al.  Computation of Exponential Integrals , 1980, TOMS.

[21]  Matest M. Agrest,et al.  Theory of incomplete cylindrical functions and their applications , 1971 .

[22]  D. E. Parry The electrostatic potential in the surface region of an ionic crystal , 1975 .

[23]  F. Harris MORE ABOUT THE LEAKY AQUIFER FUNCTION , 1998 .

[24]  F. Harris On Kryachko's formula for the leaky aquifer function , 2001 .

[25]  E. Kryachko Explicit Expression for the Leaky Aquifer Function , 2000 .

[26]  Nico Temme,et al.  The numerical computation of the confluent hypergeometric function u(a,b,z) : (preprint) , 1980 .

[27]  F. Harris New approach to calculation of the leaky aquifer function , 1997 .

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  Ian J. Thompson,et al.  Modified bessel functions Iv(z) and Kv(z) of real order and complex argument, to selected accuracy , 1987 .