Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.

We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica D 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.

[1]  J. Moehlis,et al.  Heteroclinic dynamics in a model of Faraday waves in a square container , 2009 .

[2]  A. Sievers,et al.  Driven localized excitations in the acoustic spectrum of small nonlinear macroscopic and microscopic lattices. , 2007, Physical review letters.

[3]  J. Rogers,et al.  Synchronization by nonlinear frequency pulling. , 2004, Physical review letters.

[4]  Ron Lifshitz,et al.  Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays , 2003 .

[5]  Wei Zhang Global and chaotic dynamics for a parametrically excited thin plate , 2001 .

[6]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[7]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[8]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[9]  Z. C. Feng,et al.  Global bifurcations in the motion of parametrically excited thin plates , 1993 .

[10]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[11]  A. Sievers,et al.  LOW-DIMENSIONAL AND DISORDERED SYSTEMS Visualizing intrinsic localized modes with a nonlinear micromechanical array , 2008 .

[12]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.

[13]  J. Moehlis,et al.  Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation , 2007, Journal of Microelectromechanical Systems.

[14]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[15]  George Haller,et al.  N-pulse homoclinic orbits in perturbations of resonant hamiltonian systems , 1995 .

[16]  Bernard Yurke,et al.  Mass detection with a nonlinear nanomechanical resonator. , 2006 .

[17]  Procaccia,et al.  Theory of chaos in surface waves: The reduction from hydrodynamics to few-dimensional dynamics. , 1986, Physical review letters.

[18]  John L. Crassidis,et al.  Sensors and actuators , 2005, Conference on Electron Devices, 2005 Spanish.

[19]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[20]  L. G. Leal,et al.  Symmetries of the Amplitude Equations of an Inextensional Beam With Internal Resonance , 1995 .

[21]  Yaron Bromberg,et al.  Response of discrete nonlinear systems with many degrees of freedom. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  G. Kovačič Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems , 1995 .

[23]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[24]  Z. C. Feng,et al.  Symmetry-breaking bifurcations in resonant surface waves , 1989, Journal of Fluid Mechanics.

[25]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[26]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[27]  Y. Lai,et al.  Energy enhancement and chaos control in microelectromechanical systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Sebastien Hentz,et al.  Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications , 2010 .

[29]  Amir H.D. Markazi,et al.  Chaos prediction and control in MEMS resonators , 2010 .

[30]  Wenhua Zhang,et al.  Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor , 2002 .

[31]  H. B. Chan,et al.  Paths of fluctuation induced switching. , 2008, Physical review letters.

[32]  Ron Lifshitz,et al.  Pattern selection in parametrically driven arrays of nonlinear resonators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Stephen Wiggins,et al.  On the existence of chaos in a class of two-degree-of-freedom, damped, strongly parametrically forced mechanical systems with brokenO(2) symmetry , 1993 .

[34]  B. M. Fulk MATH , 1992 .

[35]  Jerrold E. Marsden,et al.  Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom , 1982 .

[36]  R. Toupin ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .

[37]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  Ron Lifshitz,et al.  Intrinsic localized modes in parametrically driven arrays of nonlinear resonators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  A. Cleland Foundations of nanomechanics , 2002 .

[41]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[42]  A. J. Sievers,et al.  Colloquium: Nonlinear energy localization and its manipulation in micromechanical oscillator arrays , 2006 .

[43]  Ron Lifshitz,et al.  Synchronization by reactive coupling and nonlinear frequency pulling. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  P. Libby The Scientific American , 1881, Nature.

[45]  Procaccia,et al.  Low-dimensional chaos in surface waves: Theoretical analysis of an experiment. , 1986, Physical review. A, General physics.

[46]  Gilberto Corso,et al.  Evidence of a nanomechanical resonator being driven into chaotic response via the Ruelle–Takens route , 2002 .

[47]  Jerrold E. Marsden,et al.  Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems , 1982 .

[48]  Steven W. Shaw,et al.  Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators , 2010 .

[49]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[50]  Michael L. Roukes,et al.  Electrically tunable collective response in a coupled micromechanical array , 2002 .

[51]  N. Aluru,et al.  Complex oscillations and chaos in electrostatic microelectromechanical systems under superharmonic excitations. , 2005, Physical review letters.

[52]  Willett,et al.  Evading amplifier noise in nonlinear oscillators. , 1994, Physical review letters.

[53]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[54]  M. Roukes,et al.  Plenty of room, indeed. , 2001, Scientific American.

[55]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[56]  G. Kovačič Dissipative dynamics of orbits homoclinic to a resonance band , 1992 .

[57]  M. Roukes,et al.  Parametric nanomechanical amplification at very high frequency. , 2009, Nano letters.

[58]  B. Reig,et al.  Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors , 2009, Nanotechnology.

[59]  M. Roukes,et al.  Nonlinear dynamics and chaos in two coupled nanomechanical resonators , 2008, 0811.0870.

[60]  J. Gilman,et al.  Nanotechnology , 2001 .

[61]  M. Devoret,et al.  Invited review article: The Josephson bifurcation amplifier. , 2009, The Review of scientific instruments.

[62]  Tasso J. Kaper,et al.  MULTI-BUMP ORBITS HOMOCLINIC TO RESONANCE BANDS , 1996 .

[63]  M. Roukes,et al.  Basins of attraction of a nonlinear nanomechanical resonator. , 2007, Physical review letters.

[64]  姜祈傑 「Science」與「Nature」之科學計量分析 , 2008 .

[65]  T Brandes,et al.  Single-electron-phonon interaction in a suspended quantum dot phonon cavity. , 2003, Physical review letters.

[66]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[67]  H. B. Chan,et al.  Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators. , 2007, Physical review letters.

[68]  Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. , 2007, cond-mat/0702255.

[69]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[70]  Heinz Georg Schuster,et al.  Reviews of nonlinear dynamics and complexity , 2008 .

[71]  Alex Retzker,et al.  Classical to quantum transition of a driven nonlinear nanomechanical resonator , 2007, Physical review letters.

[72]  A. Lösch Nano , 2012, Ortsregister.

[73]  Qiao Lin,et al.  Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system , 2004 .

[74]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[75]  G. Kovačič,et al.  Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation , 1992 .